ZASTOSOWANIE KOMBINATORYKI DO ANALIZY WYNIKÓW BADAŃ ZMĘCZENIA TWORZYW KONSTRUKCYJNYCH

Marian A. PARTYKA, Grzegorz GARBACZ

Streszczenie: Opracowanie metody przydatnej w praktyce inżynierskiej, umożliwiającej pewną ocenę stanu uszkodzenia materiałów jest problemem nadal aktualnym. W niniejszej pracy przedstawiono sposób zastosowania analizy kombinatorycznej w komputerowym wspomaganiu prognozowania trwałości zmęczeniowej materiałów konstrukcyjnych. Analizę kombinatoryczną traktuje się jako narzędzie uniwersalne, niezależne od przyjętego kryterium wyznaczania trwałości zmęczeniowej tworzyw konstrukcyjnych.

Słowa kluczowe: trwałość zmęczeniowa, obciążenia modelowane, analiza kombinatoryczna, drzewo decyzyjne, ranga ważności.

1. Wprowadzenie

"Uszkodzenia, degradacja i zmęczenie materiałów konstrukcyjnych to sekwencja zjawisk zachodzących pod wpływem obciążeń eksploatacyjnych, sekwencja niezwykle groźna ze względów bezpieczeństwa konstrukcji inżynierskich. W chwili obecnej nie ma metody umożliwiającej pewną ocenę stanu uszkodzenia materiałów w różnych etapach eksploatacyjnych przydatnej w praktyce inżynierskiej" [2]. Celem niniejszej pracy jest przedstawienie sposobu zastosowania analizy kombinatorycznej w komputerowym wspomaganiu prognozowania trwałości zmęczeniowej materiałów konstrukcyjnych.

Analizę przeprowadzono na przykładzie specjalizowanej maszyny zmęczeniowej typu MZGS-100PL/PZ [1, 3, 7].

Zakres zastosowań analizy kombinatorycznej w porządkowaniu obciążeń modelowanych podczas wyznaczania trwałości zmęczeniowej opiera się na wielowartościowej tablicy kombinacji [12]. Dla różnych obciążeń realizowanych za pomocą mas ciężarków tarcz wibratora maszyny i ich ustalonych uporządkowań według zapisu naturalnego, otrzymano zbiór uporządkowanych kombinacji w ujęciu kombinatorycznym. Po wyznaczeniu trwałości zmęczeniowej można inaczej uporządkować wiersze kombinacji, np. : według wzrastającej trwałości.

Każda kombinacja ciężarków i tarcz wibratora oznacza ścieżkę na drzewie decyzyjnym, w której piętrami są tarcze, a gałązkami różne ciężarki. Dlatego można zbadać wpływ (rangę ważności) zbioru ciężarków na tarczach z punku widzenia dowolnych ustalonych zakresów trwałości zmęczeniowej. Ponadto można określić taki wpływ dla wzrastającej trwałości obliczeniowej.

2. Opis stanowiska badawczego

Modelowanie obciążeń próbek tworzyw konstrukcyjnych przeprowadzono w oparciu o maszynę do badań zmęczeniowych, przy kombinacji poliharmonicznego proporcjonalnego zginania ze skręcaniem typu MZGS–100PL/PZ.

Pierwowzorem tego urządzenia jest maszyna do wywoływania zmęczeniowych cykli giętno - skrętnych firmy Amsler [5]. W prezentowanej tu wersji maszyny zastosowano czterotarczowy wibrator bezwładnościowy oraz rozwiązanie napędu wibratora poliharmonicznego w oparciu o [1, 4].

Rys. 1. Schemat budowy maszyny zmęczeniowej MZGS100PL/PZ. 1 dźwignia, 2 i 4 uchwyty, 3 próbka, 5 pokrętna tarcza, 6 cięgno, 7 wibrator poliharmoniczny, 8 sprężyna, 9 obciążniki, 10 wałek pośredniczący, 11 nakrętki dociskające 12 koło zębate, 13 i 16 pasy zębate, 14 silnik elektryczny, 15 falownik

Konstrukcja maszyny pozwala na ustawienie rodzaju stanu naprężenia w próbce, tzn. wyłącznie skręcanie, wyłącznie zginanie, oraz złożony stan naprężenia wywołany równocześnie działającym momentem zginającym i momentem skręcającym.

Na tarczach wibratora poliharmonicznego montuje się ciężarki po jednym na każdej, określając w ten sposób amplitudę drgań. Rejestracja wyników i obserwacja pomiaru obciążenia badanej próbki możliwa jest dzięki zastosowaniu wzmacniacza tensometrycznego i komputera, które pobierają sygnał elektryczny z tensometrów umieszczonych na dźwigni lub na próbce.

Schemat kinematyczny przekładni napędu wibratora maszyny jest przedstawiony na rysunku 2.

Rys. 2. Schemat kinematyczny napędu wibratora poliharmonicznego maszyny MZGS-100PL/PZ

Przełożenia przekładni dla poszczególnych tarcz wibratora poliharmonicznego mają wartości:

 $i_1 = Z_5 / Z_1 = 2,118$ $i_3 = Z_7 / Z_3 = 1,875$ $i_4 = Z_8 / Z_4 = 1,944$

Znając wartości przełożeń można wyznaczyć okres wynikowy sumy czterech wymuszeń harmonicznych, zależnie od częstotliwości ruchu obrotowego silnika f_0 , zadanej na wałku pośredniczącym poprzez przełożenie $Z_p \ / \ Z_s = 1.$

Częstotliwości obrotów poszczególnych tarcz wibratora są następujące: $f_1 = f_0 \ 17 \ / \ 36$ dla I tarczy; $f_2 = f_0 \ 32 \ / \ 51$ dla II tarczy; $f_3 = f_0 \ 32 \ / \ 60$ dla III tarczy; $f_4 = f_0 \ 18 \ / \ 35$ dla IV tarczy - numery tarcz wibratora odpowiadają parom współpracujących kół na rys.2.

Do badań na opisanym stanowisku stosowane są próbki wykonane zgodnie z zaleceniami norm: [13, 14].

Rys. 3. Kształt i wymiary stosowanych próbek

W każdym widmie obciążenia eksploatacyjnego można wyodrębnić dominujące częstotliwości i odpowiadające im amplitudy naprężeń. Taka analiza prowadzi do przedstawienia obciążenia eksploatacyjnego jako sumy drgań harmonicznych o różnych amplitudach naprężeń i ogólnie niezerowych fazach początkowych. Stanowi ona też podstawę do założenia upraszczającego, w którym szerokopasmowe widmo częstotliwości obciążenia eksploatacyjnego aproksymuje się przebiegiem poliharmonicznym o czterech częstotliwościach składowych. Realizacji właśnie takiego modelu teoretycznego służy specjalizowana maszyna zmęczeniowa typu MZGS–100PL/PZ.

3. Modelowanie obciążeń

Ustawienie obciążenia próbki polega na ustawieniu czterech parametrów pracy omawianej tu maszyny:

- zakłada się wybrane ciężarki na tarcze wibratora poliharmonicznego, ustalając w ten sposób wielkości niewyrównoważonych mas na odpowiednich promieniach tarcz,
- posługując się podziałką kątową, umieszczoną na kołach zębatych wibratora, ustawia się kąty przesunięcia fazowego między tarczami, które następnie ustala się przez zablokowanie kół zębatych na wałku pośredniczącym,
- ustawia się kąt skręcenia głowicy α w celu ustalenia proporcji pomiędzy momentami zginającym i skręcającym obciążającymi próbkę,
- w chwili rozpoczęcia próby zmęczeniowej należy wyzerować licznik obrotów silnika i potencjometrem sterownika ustalić czestotliwość obrotów wałka silnika f₀.

Częstotliwość ta jest równa częstotliwości obrotów wałka pośredniczącego i stanowi podstawę określenia siły odśrodkowej od niewyrównoważonych mas.

Tabela 1 przedstawia masy używanych ciężarków tarcz oraz przypisane im oznaczenia.

Oznaczenie ciężarków tarcz wibratora	Masa ciężarka [g]
D	47,5
S	29,7
М	20,5

Tab. 1. Oznaczenia mas ciężarków tarcz wibratora

Przyjęto, że skrót np. DSMS oznacza: ciężarek D–umieszczono na I tarczy odpowiadającej pierwszej parze kół, ciężarek S–umieszczono na II tarczy odpowiadającej drugiej parze kół, ciężarek M–umieszczono na III tarczy odpowiadającej trzeciej parze kół, ciężarek S–umieszczono na tarczy IV odpowiadającej czwartej parze kół.

W tabeli 3 zostały zapisane wszystkie możliwe warianty montowania obciążników na poszczególnych tarczach, dla których rejestrowano historie obciążeń.

Kombi-

MSDS

MSDM

nacja

66

Kombi-Kombi-Kombi-Kombi-Lp Lp Lp. Lp Lp. nacja nacja nacja nacja 1 DDDD 17 DSMS 33 **SDSM** 49 **SMSD** 65

34

Tab. 2. Kombinacje 3 ciężarków na 4 tarczach

18

DSMM

DDDS

2

SDMD

50

SMSS

3	DDDM	19	DMDD	35	SDMS	51	SMSM	67	MSSD
4	DDSD	20	DMDS	36	SDMM	52	SMMD	68	MSSS
5	DDSS	21	DMDM	37	SSDD	53	SMMS	69	MSSM
6	DDSM	22	DMSD	38	SSDS	54	SMMM	70	MSMD
7	DDMD	23	DMSS	39	SSDM	55	MDDD	71	MSMS
8	DDMS	24	DMSM	40	SSSD	56	MDDS	72	MSMM
9	DDMM	25	DMMD	41	SSSS	57	MDDM	73	MMDD
10	DSDD	26	DMMS	42	SSSM	58	MDSD	74	MMDS
11	DSDS	27	DMMM	43	SSMD	59	MDSS	75	MMDM
12	DSDM	28	SDDD	44	SSMS	60	MDSM	76	MMSD
13	DSSD	29	SDDS	45	SSMM	61	MDMD	77	MMSS
14	DSSS	30	SDDM	46	SMDD	62	MDMS	78	MMSM
15	DSSM	31	SDSD	47	SMDS	63	MDMM	79	MMMD
16	DSMD	32	SDSS	48	SMDM	64	MSDD	80	MMMS
								81	MMMM

Aby otrzymać symulowane historie obciążeń, próbki montowano tylko po jednym ciężarku D, S lub M na poszczególnych tarczach wibratora bezwładnościowego. Dlatego cały wibrator pracując tylko z jednym ciężarkiem generował przebiegi sinusoidalne. Dla wybranej częstotliwości f_0 obrotów wałka pośredniczącego można zatem otrzymać 12 takich przebiegów. Przebiegi te były rejestrowane jako sygnał elektryczny z tensometrów umieszczonych na dźwigni maszyny. Na podstawie zależności otrzymanych poprzez cechowanie układu pomiarowego, sygnał elektryczny odpowiadający amplitudom obciążeń przeliczono na naprężenia w próbce, zakładając obciążenia wyłącznie od zginania. W tabelach 3, 4 i 5 zamieszczono wyniki takiego postępowania dla trzech częstotliwości obrotów wałka pośredniczącego $f_0 = 35$, 39 oraz 41Hz..

Tab. 3. Amplitudy naprężeń przy zerowym kącie przesunięcia fazowego, obciążeniach DDD wyłącznie od zginania i częstotliwości obrotów wałka pośredniczącego f_=35 Hz

	Amplituda naprężenia w próbce [MPa]								
Rodzaj	Tarcza I	Tarcza II	Tarcza III	Tarcza IV					
ciężarka									
D	49,74	79,59	52,69	64,11					
S	28,74	50,48	33,90	38,32					
М	20,63	34,63	23,21	26,16					

Tab. 4. Amplitudy naprężeń przy zerowy	n kącie przesunięcia fazoweg	go, obciążeniach
DDD wyłącznie od zginania i częstotliwo	ści obrotów wałka pośrednic	zącego f ₀ =39Hz

		Amplituda naprężenia w próbce [MPa]							
Rodzaj ciężarka	Tarcza I	Tarcza II	Tarcza III	Tarcza IV					
D	64,85	121,96	69,64	85,11					

S	38,69	76,64	45,32	50,85
М	26,16	51,95	30,95	35,00

Tab. 5. Amplitudy naprężeń przy zerowym kącie przesunięcia fazowego, obciążeniach DDD wyłącznie od zginania i częstotliwości obrotów wałka pośredniczącego $f_0=41$ Hz

		Amplituda naprężenia w próbce [MPa]								
Rodzaj ciężarka	Tarcza I	Tarcza II	Tarcza III	Tarcza IV						
D	73,32	158,44	82,53	98,38						
S	43,48	96,9	53,43	57,85						
М	30,21	66,69	36,11	40,16						

W wyniku komputerowej symulacji przebiegów poliharmonicznych otrzymano każdorazowo 81 historii obciążeń dla wybranych częstotliwości f_0 .

Symulowane przebiegi czasowe naprężeń uzyskano na podstawie wzoru:

$$\sigma(t) = \sum_{n=1}^{4} A_n \sin(\omega_n t)$$
(1)

gdzie: A_n - amplituda zmierzona (przyjmująca wartości z tab.3 dla f₀=35Hz) ω_n - prędkość kątowa pojedynczej tarczy odpowiadająca przełożeniu i zadanej częstotliwości obrotów wałka pośredniczącego f₀.

Założono fazy początkowe ruchu tarcz równe zeru.

Na rysunkach 4 i 5 przedstawiono przebiegi: zamodelowany i rzeczywisty - zmierzony przy pomocy tensometrów umieszczonych na dźwigni. dla częstotliwości obrotów wałka pośredniczącego $f_0=35$ Hz. Porównanie zobrazowano na podstawie N = 2048 wartości punktowych każdego z przebiegów.

Rys. 4. Przebieg naprężenia modelowany według wzoru (1) z uwzględnieniem amplitud kolejnych tarcz wibratora wynoszących: 49,74; 79,59; 52,69 oraz 64,11[MPa] (przyjęty do symulacji okres próbkowania $\Delta t = 0,003$ [s])

Rys. 5. Przebieg naprężenia wyznaczony eksperymentalnie na podstawie sygnału z tensometrów umieszczonych na dźwigni maszyny (okres próbkowania $\Delta t = 0,003$ [s])

Interpretuje się, że różnice w kształcie wykresów pokazanych na rysunkach 4 i 5 wynikają z przypadkowo wybranego czasu obserwacji przebiegu rzeczywistego. Odnalezienie odpowiadających sobie fragmentów porównywanych przebiegów byłoby trudne do zrealizowania, gdyż okres wynikowy drgań wibratora jest względnie długi i tak np. dla f_0 = 35Hz wynosi 612 sekund, a czas obserwacji dla przebiegu z rys.5 to jedynie 1,5 sekundy. Zaletą proponowanego sposobu modelowania naprężeń jest możliwość operowania postacią matematyczną obciążeń próbki oraz uniknięcie pomiarów tensometrycznych połączonych z wymienianiem ciężarków wibratora bezwładnościowego dla 81 kombinacji.

4. Prognozowanie trwałości zmęczeniowej próbek na podstawie obciążeń modelowanych

Przebiegi obciążeń dla wybranych częstotliwości 39Hz oraz 41Hz, dla kombinacji ciężarków DDDD i przy udziale wyłącznie momentu zginającego, modelowano sposobem przedstawionym w rozdz.3, a następnie poddano schematyzacji przy użyciu algorytmu płynącego deszczu. Założono, że badanym materiałem jest stal 18G2A. Korzystając z hipotezy kumulacji uszkodzeń Palmgrena–Minera [6] obliczono trwałość zmęczeniową próbek T_{obl} .

$$T_{obl} = T_o / S(T_o)$$
⁽²⁾

$$S(T_{o}) = \begin{cases} \sum_{i=1}^{k} \frac{n_{i}}{N_{0} \left(\frac{Z}{\sigma_{ai}}\right)^{m}} & \text{dla } \sigma_{ai} \geq a \cdot Z \\ 0 & \text{dla } \sigma_{ai} < a \cdot Z \end{cases}$$
(3)

gdzie: To -czas obserwacji,

 $S(T_o)$ - stopień uszkodzenia materiału w czasie T_o ,

 n_i - liczba cykli o amplitudach σ_{ai} w realizacji T_0 ,

m – współczynnik potęgowy krzywej Wöhlera,

N_o - graniczna liczba cykli,

Z - granica zmęczenia,

 σ_{ai} - amplitudy cykli i półcyki zliczone metodą rain flow,

a - współczynnik uwzględniający przy kumulacji uszkodzeń także amplitudy poniżej granicy zmęczenia (przyjęto a = 0,5).

Wartości: m, Z, N_o dla stali 18G2A, przy symetrycznym obciążeniu wyłącznie momentem zginającym przyjęto wg [8]:

m = 7,17; Z =270 [MPa]; N_o =2,67 10⁶ cykli.

Obliczone trwałości dla częstotliwości 39Hz zapisano w zbiorze oznaczonym umownie przez A, natomiast dla 41Hz w zbiorze B. W tab.6 sposoby montowania ciężarków na poszczególnych tarczach wibratora bezwładnościowego maszyny uszeregowano według porządku kombinatorycznego, przypisując im obliczoną trwałość dla danych ze zbiorów A i B.

Tab. 6. Trwałości ze zbiorów A i B przypisane porządkowi kombinatorycznemu

				<u>* 1</u>				
Kombinacja	A trw. godz.	B trw. godz.	Kombinacja	A trw. godz.	B trw. godz.	Kombinacja	A trw. godz.	B trw. godz.
DDDD	125	33	SDDD	187	47	MDDD	215	54
DDDS	248	63	SDDS	400	98	MDDS	480	115
DDDM	327	80	SDDM	546	130	MDDM	664	153
DDSD	194	50	SDSD	306	76	MDSD	371	88
DDSS	410	104	SDSS	729	175	MDSS	905	210
DDSM	564	67	SDSM	1063	241	MDSM	1365	296
DDMD	238	61	SDMD	390	96	MDMD	470	112
DDMS	534	132	SDMS	1007	234	MDMS	1296	287
DDMM	730	179	SDMM	1515	334	MDMM	2051	420
DSDD	376	119	SSDD	645	199	MSDD	785	237
DSDS	881	277	SSDS	1714	523	MSDS	2246	658
DSDM	1275	386	SSDM	2678	769	MSDM	3587	999
DSSD	662	208	SSSD	1213	376	MSSD	1568	467
DSSS	1840	550	SSSS	3999	1161	MSSS	5669	1542
DSSM	2886	820	SSSM	6822	1883	MSSM	11019	2621
DSMD	916	275	SSMD	1713	524	MSMD	2232	666
DSMS	2505	790	SSMS	6439	1827	MSMS	10304	2528
DSMM	4205	1229	SSMM	6051	3211	MSMM	23055	4850
DMDD	679	228	SMDD	1289	417	MMDD	1639	515
DMDS	1793	596	SMDS	4275	1294	MMDS	5986	1728

DMDM	2814	893	SMDM	7457	2111	MMDM	11524	3000
DMSD	1307	438	SMSD	2817	894	MMSD	3809	1167
DMSS	4299	1338	SMSS	11407	3437	MMSS	20216	5151
DMSM	7011	2198	SMSM	27848	6445	MMSM	53054	10408
DMMD	1885	613	SMMD	4327	1346	MMMD	6445	1824
DMMS	6386	2105	SMMS	24231	6243	MMMS	50803	10144
DMMM	12472	3741	SMMM	68873	12992	MMMM	500095	24147

5. Wyznaczenie odchyleń uporządkowania kombinacji

Trwałość obliczona zgodnie z opisem w p 4 przyjęto jako kryterium porządkowania ważności kombinacji układu różnych obciążników na poszczególnych tarczach.

Tabelę 7 otrzymano w przedstawiony poniżej sposób:

1. Wiersze tab.6 uporządkowano według wzrastającej trwałości odpowiadającej przebiegom obciążeń ze zbioru A;

2. Po takim uporządkowaniu przypisano kombinacjom ciężarków i odpowiadającym im trwałościom liczby porządkowe kolejno od 1 do 81;

3. Tabelę w tej postaci uporządkowano jeszcze raz według wzrastającej trwałości obliczonej dla przebiegów obciążeń ze zbioru B.

Tab. 7. Uporządkowanie w	ierszy tab.6	według	wzrastającej	trwałości	obliczonej	dla
przebiegów obciążeń ze zb	ioru B					

Kombinacja	A	В	Lp.	Kombinacja	А	В	Lp.
	trw. godz.	trw.godz.			trw. godz.	trw. godz.	
DDDD	125	33	1	SSDS	1714	523	41
SDDD	187	47	2	SSMD	1713	524	40
DDSD	194	50	3	DSSS	1840	550	43
MDDD	215	54	4	DMDS	1793	596	42
DDMD	238	61	5	DMMD	1885	613	44
DDDS	248	63	6	MSDS	2246	658	47
DDSM	564	67	18	MSMD	2232	666	46
SDSD	306	76	7	SSDM	2678	769	49
DDDM	327	80	8	DSMS	2505	790	48
MDSD	371	88	9	DSSM	2886	820	52
SDMD	390	96	11	DMDM	2814	893	50
SDDS	400	98	12	SMSD	2817	894	51
DDSS	410	104	13	MSDM	3587	999	53
MDMD	470	112	14	SSSS	3999	1161	55
MDDS	480	115	15	MMSD	3809	1167	54
DSDD	376	119	10	DSMM	4205	1229	56
SDDM	546	130	17	SMDS	4275	1294	57
DDMS	534	132	16	DMSS	4299	1338	58
MDDM	664	153	21	SMMD	4327	1346	59
SDSS	729	175	23	MSSS	5669	1542	60
DDMM	730	179	24	MMDS	5986	1728	61
SSDD	645	199	19	MMMD	6445	1824	65

DSSD	662	208	20	SSMS	6439	1827	64
MDSS	905	210	27	SSSM	6822	1883	66
DMDD	679	228	22	DMMS	6386	2105	63
SDMS	1007	234	29	SMDM	7457	2111	68
MSDD	785	237	25	DMSM	7011	2198	67
SDSM	1063	241	30	MSMS	10304	2528	69
DSMD	916	275	28	MSSM	11019	2621	70
DSDS	881	277	26	MMDM	11524	3000	72
MDMS	1296	287	34	SSMM	6051	3211	62
MDSM	1365	296	36	SMSS	11407	3437	71
SDMM	1515	334	37	DMMM	12472	3741	73
SSSD	1213	376	31	MSMM	23055	4850	75
DSDM	1275	386	32	MMSS	20216	5151	74
SMDD	1289	417	33	SMMS	24231	6243	76
MDMM	2051	420	45	SMSM	27848	6445	77
DMSD	1307	438	35	MMMS	50803	10144	78
MSSD	1568	467	38	MMSM	53054	10408	79
MMDD	1639	515	39	SMMM	68873	12992	80
				MMMM	500095	24147	81

Gdyby obliczonej trwałości zmęczeniowej dla danych ze zbioru A i B odpowiadało takie samo uszeregowanie kombinacji ciężarków, to po przetworzeniu tab.6, liczby porządkowe powinny pozostać na swoich miejscach. Z tab. 7 wynika, że nie jest to prawidłowość. Odchylenia uporządkowania kombinacji ciężarków dla trwałości obliczanych na podstawie przebiegów ze zbioru A względem wzrastającej trwałości wyznaczonej dla historii obciążeń ze zbioru B przedstawiono na rys.6.

Rys. 6. Odchylenia uporządkowania kombinacji ciężarków

6. Wnioski

1) Informacje zawarte w tabeli 6 mogą być przydatne do wytypowanie różnych kombinacji ciężarków w zależności od planowanych badań zmęczeniowych w aspekcie zakresów liczby cykli oraz do określania zakresów pracy maszyny, czyli do wyznaczenia rozpiętości wartości roboczych częstotliwości f_0 dla konkretnej kombinacji ciężarków.

2) Z analizy przeprowadzonej w rozdz. 5 wynika, że trwałość zmęczeniowa, obliczona według hipotezy kumulacji uszkodzeń Palmgrena - Minera, przyjęta jako kryterium porządkowania przebiegów obciążeń poliharmonicznych, prowadzi do lokalnych przesunięć uporządkowania kombinacji obciążników dla różnych częstotliwości obrotów wałka pośredniczącego.

3) Niniejsza praca ma charakter ogólny, jest podsumowaniem publikacji [4, 9, 10, 11]. Kwestia wyboru kryterium pozostaje otwarta. W przypadku prowadzenia badań na maszynie MZGS–100PL/PZ, potencjalnymi zmiennymi decyzyjnymi są:

- masa i liczba ciężarków,
- częstotliwości obrotów wałka pośredniczącego,
- liczba tarcz (w przypadku przekonstruowania wibratora poliharmonicznego).
- rozkład częstotliwości obrotów poszczególnych tarcz (w przypadku
- przekonstruowania przekładni)

Dane pomiarowe uzyskiwane w trakcie prób to liczba cykli do zniszczenia oraz szeregi czasowe obciążeń. Przetworzenie tych danych oraz wybór kryteriów tworzą szerokie pole do implementacji analizy kombinatorycznej w badaniach zmęczenia tworzyw konstrukcyjnych.

Literatura

- 1. Achtelik H.: Urządzenie do badań zmęczeniowych na zginanie i skręcanie przy obciążeniach pseudolosowych, patent nr 158338, Urząd Patentowy R. P., Warszawa 1992.
- Dietrich L.: Uszkodzenia, degradacja i zmęczenie materiałów konstrukcyjnych. Badania mechaniczne właściwości materiałów i konstrukcji, Wykłady. Seminarium szkoleniowe, Zakopane 2005.
- 3. Garbacz G., Macha E.: Urządzenie do badań wytrzymałości zmęczeniowej tworzyw konstrukcyjnych. Patent PL 184019, Urząd Patentowy R. P., Warszawa 2002.
- Garbacz. G.: Zarządzanie eksperymentem w badaniach zmęczeniowych stali 18G2A z uwzględnieniem kombinatorycznego wyznaczania trwałości. Konferencja Nauk o Zarządzaniu, Zakopane2001; Wydz. Zarz. i Inż. Prod., Polit. Opolskiej, Zbiór Referatów, Tom 1 str. 150÷157, 2001.
- 5. Katarzyński S., Kocańda S., Zakrzewski M.: Badanie własności mechanicznych metali, WNT, Warszawa, 1969.
- 6. Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych, PWN, Warszawa, 1977.
- Macha E., Garbacz G. Maszyna MZGS-100PL/PZ do badań zmęczeniowych materiałów przy poliharmonicznym zginaniu ze skręcaniem. Przegląd Mechaniczny listopad 2001, str. 29÷34.
- Macha E., Pawliczek R., Rozumek D.: Badania zmęczeniowe próbek ze stali 10HNAP i 18G2A przy kombinacji cyklicznego zginania ze skręcaniem z udziałem wartości średnich naprężeń, Raport nr 3/98, Polit. Opolsk., Opole, 1998.

- Partyka M. A., Garbacz G.: Propozycja modelu matematycznego opisującego siłę niszczącą obciążeń modelowanych na maszynie zmęczeniowej MZGS-100PL/PZ. XXX Konfer. Zastos. Matem. PAN, Zakopane 2001; Inst. Matem. PAN, Warszawa 2001.
- 10. Partyka M. A., Garbacz G.: Zastosowanie analizy kombinatorycznej dla porównania trwałości zmęczeniowej próbek ze stali 18G2A - obliczonej na podstawie obciążeń modelowanych na maszynie MZGS-100PL/PZ przy różnych częstotliwościach roboczych maszyny. XXX Konfer. Zastos. Matem. PAN, Zakopane 2001; Inst. Matem. PAN, Warszawa, 2001.
- 11. Partyka M. A., Garbacz G.: Zastosowanie analizy kombinatorycznej w komputerowym wspomaganiu projektowania trwałości zmęczeniowej przy uwzględnieniu kryterium porządkowania obciążeń modelowanych. VI Międzynarodowa Konferencja Naukowa Computer Aided Engineering, Polanica 2002, Wydz. Mech. oraz Inst. Konstr. i Eksploatacji Masz. Polit. Wrocławskiej Wrocław, 2002.
- 12. Partyka M. A.: Logika systemów projektowania na przykładzie CAD układów maszynowych, Studia i Monografie, nr 105, Politechnika Opolska, Opole, 1999.
- 13. Polska Norma: PN-84/H-04622.
- 14. Polska Norma: PN-87/M-04215.

Prof. dr hab. Marian A. PARTYKA Dr inż. Grzegorz GARBACZ Instytut Innowacyjności Procesów i Produktów Politechnika Opolska 45-370 Opole, ul. Ozimska 75 tel./fax.: (0-77) 423 40 44 e-mail: g.garbacz@po.opole.pl