
207 

 

SIMPLE ALGORITHMS FOR RECTANGLE PACKING PROBLEM 

– FROM THEORY TO EXPERIMENTS 
 

 

Adam KURPISZ 

 

 

Abstract: In this paper we consider a Rectangle Packing Problem which is a part of 

production process in many branches of industry, i.e. VLSI circuit design, stone-cutting etc. 

We consider a slightly modified Rectangle Packing Problem where for each rectangle 

(module) its width and height come from uniform probability distribution between 0 and 1 - 

U(0,1). We provide a family of simple algorithms, together with a theoretical analysis and 

computer simulations to prove their effectiveness. All the algorithms run in polynomial 

time and provide a near optimal solution. 

 

Keywords: production engineering; optimization; Rectangle Packing Problem 

 

 

1. Introduction, definitions, notation 

 

Nowadays, due to the cost optimization, planning a production process is a challenging 

task. In many branches of industry one can face a problem of minimizing the waste of 

material used for producing some elements. One of such problems is a Rectangle Packing 

Problem (RPP).  The RPP is a discrete optimization problem [3], which could be solved by 

variety of methods developed in the past four decades [2]. We start with a formal definition 

of a Rectangle Packing Problem [1]. A set   *     + of   rectangles is given. Each 

rectangle     is characterized by its width   , height    and area         . The rotation 

(by    ) of the rectangles is allowed. The goal of the Rectangle Packing Problem (RPP) is 

to find such packing, i.e., placement coordinates of a bottom-left corner of each block  

   , that any two blocks do not overlap and the area of minimum enclosing rectangle of 

the packing is minimized. We denote as       the width and height of the enclosing 

rectangle, respectively. As the measure of the solution we use VoFP (Value of Filling 

Percentage).  

 

     
∑         

     

 
(1) 

 

In this paper we consider modification of above problem. Let       for     be the 

independent random variables from continuous uniform distribution  (   ) where 0 and 1 

are the minimum and the maximum achievable values, respectively. The values of       

describes the width and height of the i‟th rectangle. We consider continuous uniform 

distribution, thus all the values from ,   - are equiprobable. Now, in a similar way       

are some random variables which values describe the width and height of the enclosing 

rectangle. We consider the expected value of VoFP as a measure of effectiveness of an 

algorithm. 

 



208 

 

 ,    -  
 ,∑         -

 [     ]
 

(2) 

 

2. Analysis of the algorithms 

 

In this section we provide a family of simple algorithms for Rectangle Packing Problem 

together with some analysis of their effectiveness. 

 

2.1. Algorithm 1 

 

In this section we consider a very simple algorithm and we provide a probabilistic analysis 

of its solution. 

 

 Algorithm 1 

1. sort rectangles with respect to their    value  

2. from 1 to n do: 

3.     take i‟th rectangle and put inline close to the previous i-1 rectangles  

4. calculate the width    and height    of enclosing rectangle  

5. return       

 

An example of resulting packing of Algorithm 1 can be seen in Figure 1. 

 

 
Figure 1 Example of packing obtained with Algorithm 1 

 

We start the analysis with recalling the probability density function (PDF) and cumulative 

density function (CDF) for continuous uniform distribution  (   ) denoted as  ( ) and 

 ( ) respectively: 

 

 ( )      (3) 

 ( )       (4) 

  
Since we sort all the rectangles with respect to their height we have 

 

      *          +  (5) 

  
Thus we calculate the probability density function of the highest rectangle over all n given 

rectangles. The PDF of the highest rectangle can be expressed as the n order statistic from 

the set of n random variables. The general formula of PDF for k ordered statistic can be 

formed as 

 



209 

 

    ( )   .
 

 
/  ( ) ( )   (   ( ))     (6) 

 

Since we consider the continuous uniform distribution  (   ) and we look for the 

maximum height over n rectangles, thus we look for the n ordered statistic, which takes the 

form 

 

       ( )    ( ) ( )           (7) 

 

Now we calculate the expected value for of a random variable    

 

 [  ]  ∫      
 

   
 

 

 

 

(8) 

 

Since we do not interfere in the values of   , and random variables    are independent, the 

expected value of width of enclosing rectangle ( ,  -) can be formed as 

 

 ,  -   [∑   

 

   

]  ∑  ,  -

 

   

 
 

 
  

(9) 

 

The last thing is to calculate the expected value of an area of a particular rectangle. Since 

for each    ,    and    are independent, then  

 

 ,     -   ,  -   ,  -  
 

 
  

(10) 

 

 

 Thus finally, the expected value of VoFP is equal to 

 

 ,    -  

 
 

 
   

 
 
 

 
   

  
 

(11) 

 

and with     the filling percentage is close to   ⁄ . To compare the theoretical results 

with computer simulations go to the Section 3. 

 

2.2. Algorithm 2 

 

The next algorithm we take into consideration is a small modification of the algorithm 

presented in the previous subsection. This time we also make an inline packing but now 

before the rectangles are scheduled, we rotate each rectangle to ensure that its height 

exceeds its width. Thus we decrease the potential total width of enclosing rectangle    with 

only small increasing of the total height   . The formal description of an algorithm is as 

follow (Algorithm 2):  

 



210 

 

 Algorithm 2 

1. from 1 to n do: 

2.     if width of the i‟th rectangle is bigger than its height  

3.         rotate the rectangle  

4. sort rectangles with respect to their    value  

5. from 1 to n do: 

6.     take i‟th rectangle and put inline close to the previous i-1 rectangles  

7. calculate the width    and height    of enclosing rectangle  

8. return       

 

An example of resulting packing of Algorithm 2 can be seen in Figure 2. 

 

 
Figure 2 Example of packing obtained with Algorithm 2 

 

Once again the key observation is that we have to calculate the expected value of the height 

( [  ]) and the width ( ,  -) of the enclosing rectangle. We start with the ( [  ]) value. 

Since we allow rotating the rectangles, the maximum height over n rectangles is indeed the 

maximum value over all original (before rotating) values of    and   : 

 

      *                     +  (12) 

  

The PDF of the random variable    can now be formed as the maximum over    uniform 

random variables: 

 

         ( )     ( ) ( )             (13) 

 

and thus 

 

 [  ]  ∫        
  

    

 

 

  

(14) 

 

Calculating the expected value of    is now more involving than in the previous subsection. 

Every single rectangle‟s width does not come from the uniform distribution, but from the 

minimum over its height and width, thus 

 

       ( )    ( )(   ( ))   (   ) (15) 

 

 and using similar formula as in (8) one can calculate the expected value of   : 

 



211 

 

 ,  -  ∫  (   )  
 

 
 

 

 

 

(16) 

  

The expected value of width of enclosing rectangle ( ,  -) can be formed as 

 

 ,  -   [∑   

 

   

]  ∑  ,  -

 

   

 
 

 
  

(17) 

 

 Now using (10), the expected value of VoFP is equal to 

 

 ,    -  

 
 

  
    

 
 
 

 
    

  
 
 

 
 

(18) 

 

and, again, with     the filling percentage is close to   ⁄ . With comparison to the 

previous algorithm we increase the VoFP with 25% points. Simulation confirming above 

calculations is available in Section 3. 

In next two sections we describe a modification of Algorithm 1 and 2, respectively. 

 

2.3. Algorithm 3 

 

The main modification of an algorithm considered in this section is to allow the schedule to 

be multilevel. We put one rectangle next to the other and at particular point we start the 

next level, i.e. we put the rectangle on the top of the first rectangle put in the schedule. The 

number of levels we choose as √ . In this subsection (similar to the subsection 1.1) we do 

not allow the rotation. The formal description of the algorithm can be seen below. 

 

 Algorithm 3 

1. sort rectangles with respect to their    value 

2. from 1 to √  do: 

3.     from 1 to √  do: 

4.         take i‟th rectangle and put inline close to the previous rectangle  

5.     start a new level     

6. calculate the width    and height    of enclosing rectangle  

7. return       

 

An example of resulting packing of Algorithm 3 can be seen in Figure 3. 

We do not provide an exact calculation on the effectiveness of the considered algorithm, the 

analysis is much more sophisticated. Instead we provide a computer simulation. All the 

results of the simulation are available in the Section 3, together with the comparison to the 

previous algorithms. 



212 

 

 
Figure 3 Example of packing obtained with Algorithm 3 

 

2.4. Algorithm 4 

 

In this section we present the multilevel analog of the Algorithm 2. At the very beginning 

we allow the rotations (to make the rectangles higher than wider) and while the rectangles 

are scheduled one by one, at particular points we start a new layer of rectangles. Since we 

prefer the enclosing rectangle to be square shape, and because of the rotating step we 

decrease the number of layers to the 
 √ 

 
. The formal description is as follow: 

 

 Algorithm 4 

1. from 1 to n do: 

2.     if width of the i‟th rectangle is bigger than its height  

3.         rotate the rectangle  

4. sort rectangles with respect to their    value 

5. 
from 1 to 

 √ 

 
 do: 

6. 
    from 1 to 

 √ 

 
do: 

7.         take i‟th rectangle and put inline close to the previous rectangle  

8.     start a new level     

9. calculate the width    and height    of enclosing rectangle  

10. return       

 

An example of resulting packing of Algorithm 4 can be seen in Figure 4. 

 

 
Figure 4 Example of packing obtained with Algorithm 4 

 



213 

 

As in the previous subsection we skip the probabilistic analysis and make a computer 

simulation instead. For detailed information see Section 3. 

 

3. Computer simulation 

 

In this section we provide a complete computer simulation for all considered algorithms. 

For Algorithm 1 and 2 we compare the results calculated in Sections 2.1 and 2.2 with the 

one obtained with computer simulation. For Algorithms 3 and 4 we present the simulated 

VoFP. Table 1 provides a complete comparison for an instance composed of 10000 

rectangles. 

 

Table 6 Expected value of VoFP for Algorithms 1-4 

 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

Theoretic 
 ,    - 

0,5 0,75 - - 

Simulated 
 ,    - 

0,503298 0,750491 0,978394 0,981380 

 

4. Conclusions 

 

In this paper we analyze four different algorithms for Rectangle Packing Problem with data 

random from continuous uniform distribution  (   ). We show that even a simple 

procedure can lead to very efficient solution. For Algorithm 3 and 4 the VoPF equals to 

0,98. On the other hand we show that unless the problem is considered in full generality 

(with arbitrary data), using more sophisticated methods for Rectangle Packing Problem 

with random data is useless since a simple procedure guarantees a very good result.  

 

Acknowledgements 
Adam Kurpisz work is co-financed by the European Union as part of the European Social Fund. 

 

Bibliography 

 

1.  Baker B. S., Coifman E. G., Rivest R. L. Orthogonal packings in two dimensions. 

SIAM J. Comput., 9, (4), 1980, 846–855.  

2.  Blum C., Roli A. Metaheuristics in combinatorial optimization: Overview and 

conceptual comparison. ACM Computing Surveys, 35, (3), 2003, 268-308. 

3.  Cormen T., Leiserson C., Rivest R. Introduction to algorithms. McGraw-Hill Book 

Company, 1990. 

 

Mgr inż. Adam Kurpisz 

Instytut Matematyki i Informatyki 

Politechnika Wrocławska 

50-372 Wrocław, ul. Janiszewskiego 14a 

tel./fax: (0-71) 320-30-29 

e-mail:  adam.kurpisz@pwr.wroc.pl 

  

 

 


