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FOR MULTI-OBJECTIVE PERMUTATION FLOW SHOP 

SCHEDULING PROBLEM 
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Abstract: In this paper the flow shop scheduling problem with minimizing two criteria 
simultaneously is consider. Selected criteria are: makespan and the sum of tardiness of jobs. 
For each separate criteria the problem is strongly NP-hard, which makes it NP-hard as well. 
There is a number of heuristic algorithms to solve the flow shop problem with various 
single objectives, but heuristics for multi-criteria flow shop problems are not so common. 
In this paper a new idea of the use of local search method for multi-criteria problems is 
presented. 
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1. Introduction 
 

Companies wanting to maintain competitive position in fast changing market causes to 
develop and use new methods of optimization. Due to that competitiveness, developing 
effective and efficient advanced methods is extremely important. The so-called flow shop 
scheduling problem (FSSP) represents a class of widely studied cases based on ideas 
derived from production engineering, which modelled a lot of manufacturing systems, 
assembly lines, information service facilities [16], and has earned a reputation of being  
NP-hard to solve [5]. Most of the currently used single objective problems are easily 
adaptable to real world applications, but modern production scheduling problems need 
more advanced models. 

Since its first formulation, it has received considerable theoretical, computational, and 
empirical research work. Thus, permutation flow shop scheduling problem is often studied 
case in the scheduling theory, commonly considered as a practical scheduling problem with 
still relatively simple mathematical model. Due to its complexity, branch and bound 
techniques and classical mathematical programming [9] providing exact solutions, are 
applicable to only small-scale instances. Hence, a lot of various approximate solution 
methods were proposed, including constructive heuristics, improvement meta-heuristics, 
and hybrid algorithms. Multi-objective PFSSP is the result of natural evolution of models 
and solution methods, oriented on practice, since scheduling decisions usually have to take 
into account several economic indexes simultaneously. Over the last decades, a number of 
multi-objective evolutionary/genetic algorithms have been suggested. Primarily because of 
their ability to find multiple Pareto-optimal solutions (an approximation of the Pareto front) 
in single run. Since, in most cases, it is not possible to have a single solution 
simultaneously optimizing all objectives, algorithms that give solutions lying on or near the 
Pareto efficient frontier are of great practical value to different enterprises. 
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2. Literature on multi-criteria optimization  
 

General multi-criteria optimization received considerable interest in the last twenty 
years, albeit the multi-criteria discrete (particularly PFSSP) has not been so often studied. 
Especially in regard to the number of works on PFSSP with single criterion objective 
function. Most of the multi-criteria PFSSP papers are either based on branch and bound 
methods or evolutionary algorithms. 
 
2.1. General evolutionary multi-objective algorithms 
 

In [4] Deb and others suggested an Elitist Non-dominated Sorting Genetic Algorithm 
(NSGA-II), based on the Non-dominated Sorting Genetic Algorithm (NSGA), which was 
criticised for high computational complexity of non-dominated sorting, lack of elitism and 
need for specifying the sharing parameter. New version modified its approach to alleviate 
all of those difficulties, by using fast non-dominated sorting, density estimation and 
crowded comparison operator allowed it to lessen the computational complexity and guide 
the selection process of the algorithm towards a uniformly spread out Pareto-optimal front. 

Zitzler and Thiele [21] suggested maintaining an external population at every generation 
storing all discovered non-dominated solutions in theirs Strength Pareto Evolutionary 
Algorithm (SPEA). It participates in genetic operations. All non-dominated solutions are 
assigned a fitness based on the number of solutions they dominate, while dominated 
solutions are assigned a fitness worse than the worst fitness of any non-dominated solution, 
so that the search is directed towards the non-dominated solutions. Moreover, a clustering 
technique is used to ensure diversity among non-dominated solutions. 

Knowles and Corne proposed Pareto-Archived Evolutionary Strategy (PAES) [7], in 
which the child is compared with respect to the parent. If the child dominates the parent 
solution, then the parent is discarded and the child takes its place as the next parent. If the 
child is dominated by the parent, then the child is discarded and new child solution is 
generated. On the other hand, if the child and the parent do not dominate each other, the 
child is compared with the archive to check if it dominates any member of the archive of 
non-dominated solutions. If so, the child is accepted as the new parent and the dominated 
solutions are eliminated from the archive. Otherwise, both parent and child are checked for 
their nearness with the solutions of the archive and the one residing in a least crowded 
region in the parameter space is accepted as the parent and included in the archive. 

In his work, Rudolph [18] suggested, a simple elitist multi-objective evolutionary 
algorithm based on a systematic comparison of individuals from parent and offspring 
populations. The non-dominated solutions of both offspring and parent populations are 
compared, to form new set of non-dominated solutions, which becomes the parent 
population in the next iteration. If the size of this set is lower than the desired population 
size, then other solutions from the offspring population are included. Unfortunately this 
algorithm lacks in the task of maintaining diversity of Pareto-optimal solutions. 

 
2.2. Multi-criteria optimization in flow shop problems 
 

Most of multi-criteria algorithms developed for FSSP use Pareto efficiency evaluation, 
which is considered as one of the best approaches to the appraisal of solutions. Although 
there were some attempts at non-Pareto algorithms as well. 
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2.2.1. Pareto efficiency 
 

Theory of Pareto efficiency states that solution to a multi-objective problem is the set of 
non-dominated solutions called the Pareto front, where dominance is defined as follows: 
solution y = (y1, y2, . . . , yn) dominates a solution z = (z1, z2, . . . , zn) if and only if for each  
i ∈ {1 . . . n}, where yi ≤ zi and exists i ∈ {1 . . . n}, where yi < zi. 

 

 
Fig. 1. Pareto frontier and dominated solutions 

 
 
Fig. 1 shows an example of dominance of points A and B over point C and lack of such 

between aforementioned points A and B. Both of which are non-dominated and as such 
included in the approximation of the Pareto front. 

 
2.2.2. Literature on multi-objective PFSP algorithms 
 

The Multi-Objective Genetic Algorithm (MOGA) of Murata et al. [11], being part of 
evolutionary algorithms, was developed to solve multi-objective flow shop problem. Other 
than a modified selection operator, this algorithm was a simple genetic approach to 
scheduling. Selection is interrelated with a set of weights assigned to the objectives, which 
allowed to distribute the search towards different criteria directions. Elitist preservation 
method was also incorporated, so that solutions from the actual Pareto frontier were copied 
to the next generation. The MOGA was furthermore enhanced by Murata et al. [12], by 
changing the way of weight distribution between objectives. Using a cellular structure 
permitted a better weight selection, which in turn led to finding a finer approximation of 
Pareto front. New algorithm was called CMOGA. 

Armentano and Arroyo [1] described a tabu search approach for makespan and 
maximum tardiness objectives. The proposed method was compared with the genetic 
algorithm of Ishibuchi and Murata for the m-machines case. The proposed meta-heuristic 
was shown to outperform existing methods. 
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Khan and Govindan [6] presented a multi-objective simulated annealing algorithm for 
the m-machine permutation flow shop scheduling problems with the objectives of 
minimizing makespan and maximum tardiness of jobs. To prove the efficiency of the 
proposed algorithm, different test problems were solved and compared to other genetic 
algorithms and to the evolutionary algorithm. According to computational experiments, the 
proposed algorithm was more effective than others. 

There are some implementations of the particle swarm optimization algorithm for multi-
criteria FSSP. Chandrasekaran et al. [2]  presented a multi-objective particle swarm 
optimization algorithm with aim to minimize makespan, total flowtime and completion 
time variance. The authors did not compare this algorithm against any others. They only 
identified a Pareto solution set for the flow shop instances in the literature. The proposed 
particle swarm optimization was shown to yield more non-dominated solutions. 

Local search method was proposed in the work of Chakravarthy and Rajendran [3]. 
Their goal was to minimize the weighted sum of two objectives using a simple SA 
algorithm. Initial solution is selected from the following methods: a) Earliest Due Date 
(EDD), Least Static Slack (LSS) and NEH heuristic [13], while generating a neighbourhood 
was performed by the adjacent interchange scheme (AIS). Since it uses weighted 
objectives, this algorithm does not belong to the set of Pareto approach algorithms. 

Inspired by the PAES algorithm, Suresh and Mohanasundaram proposed a Pareto 
Archived Simulated Annealing (PASA) [19], in which new perturbation was suggested. 
Mechanism called Segment Random Insertion was used to generate the neighbourhood of  
a given sequence. In order to retain non-dominated solutions, an external archive is used. 
Initial solution is randomly generated, while new current solution is selected by a scaled 
weighted sum of the objective values. 

A hybrid multi-objective algorithm based on a shuffled frog-leaping algorithm and  
a variable neighbourhood search was studied Rahimi-Vahed et al. [17] It was set with the 
objectives of minimizing weighted mean earliness and weighted mean tardiness. The 
computational results showed that the proposed algorithm outperformed two multi-
objective genetic algorithms and was able to improve the quality of the obtained solutions, 
especially for large-sized problems. 

Variation of genetic algorithm, with an initialization procedure which inserts four good 
solutions into initial random population, was proposed by Pasupathy et al. in [14]. It used 
an external population, for non-dominated solutions. Evolution strategy is similar to the one 
used in NSGA-II, while crowding distance procedure is used as a secondary population 
selector. Improving the quality of Pareto frontier is based on two different local search 
procedures, applied to the external population afterwards. 
 
3. Problem description 
 

Let us consider a manufacturing system with a structure consisting of $m$ machine 
given by the set M={1,…,m. Consider a set J={1,…,n of jobs to be processed on machines. 
Each job has to be processed on a machine 1, 2,...,m in that order. Job j, j∈J, consists of  
a sequence of m operations Oj,1, Oj,2,..., Oj,m. Operation Oj,k corresponds to the processing of 
job j on a machine k during an uninterrupted processing time pj,k ≥ 0. In the permutation 
flow shop problem the job sequence must be the same on all machines. Each machine can 
execute at most one job at a time and each job can be processed on at most one machine at 
a time. Each job j∈J should be delivered before its due date dj ≥ 0. 
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The schedule of jobs (solution of the problem) can be described by starting Sj,k and 
completion times Cj,k of operations j∈J, k∈M, satisfying the above mentioned constraints. 
The operation Oj,k starts in Sj,k and completes in Cj,k. The job j, j∈J, is delivered by the 
production system in the time moment Cj,m. Two objective functions are considered: the 
total completion time Cmax and the total tardiness Ttot. For a given schedule described by Cj,k 
the objective values can be calculated with the following expressions: 
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where Tj= max(0,Cj,m−dj) is a tardiness of job j∈J. 

 
In the paper there is a reference to another (equivalent) characterization of the solution 

which uses loading sequence instead of the schedule. Let a permutation  of n jobs 
determine the processing order on all machines. The completion times can be calculated 
with following recursive expression: 

 
C(j) , k=max(C(j−1) , k ,C(j) , k −1 ) + p(j) , k , (3) 

  
where (0)=0, Cj, 0=0 for j=1,…,n  and C0, k=0 for k=1,…,m. 

 
The completion times obtained from (3) are as small as possible. Finally, due to 

regularity of both objectives, for a given processing order described by   the minimal 
value of objectives can be calculated with the following expressions: 
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where T(s)= max(0,C(s)−d(s)) is a tardiness of job (s)∈J.  
 
4. Genetic algorithm with selective local search method 
 

Research and general studies show that good solutions can be found near other good 
solution for the flow shop scheduling problem. Those features were used to construct 
Genetic Algorithm with Selective Local Search (GASLS), being a development of 
previously proposed Genetic Algorithm with Local Search [22].  

In previous work in every iteration of the algorithm, for each offspring, given number of 
iteration of stochastic Local Search (LS) method is performed to enhance the offspring. 
There is searched neighbourhood generated by adjacent interchange moves. New solution is 
generated by random swapping two adjacent jobs in current permutation. If it dominates the 
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old solution, then it replaces the parent solution in next iteration. In other case it gets 
discarded. Although the computational complexity increased. In GASLS, after each 
iteration of the GA algorithm, solutions are divided into two groups: a) dominated and  
b) non-dominated (Pareto efficient). Subsequently, unique solutions from the second group 
are selected to be subjected to LS method. It allowed to decrease computational time of LS 
method and also, without increasing computational time of whole algorithm, allowed more 
thorough search the neighbourhoods of unique non-dominated solutions. 

 
Fig. 2. Sample of PMX Crossover 

 
In GASLS implementation the individuals in population are represented by jobs 
permutation and values of their criteria functions. The GASLS algorithm uses partially 
matched crossover (PMX) crossover (see Fig. 2) and tournament selection, while fitness 
value is based on non-domination level and distance from direct neighbours. Initial 
population includes solutions obtained from NEH algorithm adapted to solve PFSSP 
problem with each of criteria from objective function. Such initialization allows to faster 
designate approximation of Pareto front. Moreover, non-dominated solutions are archived 
in external population. 
 
5. Computational evaluation 
 

The aim of the experiment was to compare the effectiveness of a proposed algorithm 
with the benchmarks taken from literature. The algorithms were tested on 100 benchmark 
instances provided by Taillard [20] for the flow-shop problem and modified by Minella 
[10] for total tardiness criterion. The benchmark set contains 10 groups of 'hard' instances 
of different sizes. 

The implementations were compiled and executed on the Dell Inspiron 7720 SE with 
Intel i7-3610QM 2.30 GHz processor. The computation times of GASLS were comparable 
to those of former GA with LS method. 

Comparison of multi-criteria algorithms is not as easy as comparing algorithms with 
single criterion objective function, where lower/higher (minimization/maximization) value 
of solution translates directly to a better solution. Considering different methods (scalar, 
Pareto and others) of solution evaluation, there is no single way to evaluate which set of 
non-dominated solutions is clearly better than the other. Selected approaches are based on  
a dominance relation, so a returned result for each instance is a set of non-dominated 
solutions, called approximation of Pareto front. 
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5.1. Quality indicators and reference data 
 

In this paper three ways of comparing results were used. Both algorithms were tested 
with the same computation time limit, and furthermore compared using following methods. 
 
5.1.1. Number of Pareto efficient solutions 
 

In earlier work [15] certain method of comparison was devised, which used  
a percentage of non-dominated solutions in the aggregation of compared sets as an 
indicator. Solutions from all the algorithms were flagged and aggregated into a single set, 
which was then purged of dominated solutions. A number of solutions in this global Pareto-
efficient set was computed for each algorithm and those numbers were compared to 
evaluate solution sets. 

 
5.1.2. Hyper-volume Indicator 
 

Knowles et al. [8] provided a few necessary tools for a better evaluation and comparison 
of multi-objective algorithms. They proposed, among others, a hyper-volume indicator IH to 
measure quality of the Pareto frontier approximations. Hyper-volume indicator measures 
the area covered by the approximated Pareto fronts for each of the algorithms. In order to 
bound this area, a reference point is used. A greater value of IH indicates both a better 
convergence to as well as a good coverage of the optimal Pareto front, see Fig. 3.  

In this case, reference points were calculated as follows. For each of the criteria used 
worst value from both (LS and SLS) non-dominated sets were taken, multiplied it by 1.2 
and assigned as reference points value of that criteria. 

 
5.1.3. Subspace coverage 

 
Using IH values, coverage of GA with LS of the GASLS method was computed. The 

lower the value of such, the better results obtained by GASLS algorithm in comparison to 
GA with LS algorithm. 
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6. Experimental evaluation 
 

Solution sets obtained from both algorithms were compared using previously mentioned 
indicators and presented in the summarized groups of instances. 

As can be seen in Tab. 1, proposed GASLS algorithm outperforms classic GA with 
stochastic LS method in number of found Pareto solutions. Moreover, in above mentioned 
table only solutions non-dominated in both sets were counted. Proposed GASLS, with 
similar computational time, found over three times more solutions. 
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Fig. 3. Visualization of Hyper-volume indicator 

 
Tab. 1. Number of Pareto solutions 
Instance Size GA with LS GASLS 

20x5 58 236 
20x10 128 395 
20x20 114 328 
50x5 80 181 
50z10 100 415 
50x20 135 752 
100x5 68 228 

100x10 145 372 
100x20 145 514 

Instance Size GA with LS GASLS 
200x10 137 392 

Sum 1110 3813 
 
Previously proposed algorithm covered, in average, only around 72% of newly found 

non-dominated subspace. Newly proposed GASLS mostly outperformed previous 
algorithm in cases with 10 and more machines, while with only 5 machines they obtained 
more similar results. It could be caused by lower number of criteria function computations 
in case with fewer machines. 
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Tab. 2. Coverage of GA with LS over GASLS 
Instance Size GA with LS GASLS Coverage 

20x5 0,08 0,12 68,1% 
20x10 0,20 0,24 82,2% 
20x20 0,19 0,22 84,3% 
50x5 0,05 0,06 82,5% 
50z10 0,05 0,09 59,7% 
50x20 0,09 0,16 59,2% 
100x5 0,04 0,05 85,2% 

100x10 0,04 0,06 70,0% 
100x20 0,04 0,07 58,9% 
200x10 0,03 0,05 67,3% 
Average 0,08 0,11 71,7% 

 
In all cases, proposed GASLS outperforms previous GA with LS considerably and 

shows it potential in instance cases of higher computational time of criteria objectives. 
Furthermore, it allows for more accurate solution space search. 
 
7. Conclusions and future work 
 

Proposed GASLS allows better approximation of Pareto frontier in approximate 
computational time. It is the result of lowering number of solutions undergoing local search 
and increasing the spread of said search, which confirms earlier assumption that good (or 
non-dominated) solutions are placed in the neighbourhood of previously found good 
solutions.  Future work with multi-objective algorithms, including genetic algorithms, 
assumes the use of Multi-Criteria Decision Making, e.g. Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS) or Light Beam Search (LBS). 
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