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Abstract: Hydraulic machines are one of the most widespread machine classes, without 
which it  would be hard to imagine the functioning of modern industry and of society today.  
Among cavity pumps used in hydraulic drive systems as energy generators, gear pumps are 
the most widespread. Apart from their numerous advantages from the point of view of 
noisiness and the delivery fluctuation coefficient, they are inferior to others. Steps are 
undertaken to decrease the noisiness. The paper is restricted to the analysis of acoustic 
properties of an innovative gear unit after tooth root undercutting. Acoustic properties have 
been described with taking into consideration neural networks. 
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1. Introduction 

 
From among the displacement pumps, gear pumps are most commonly used (their share 

is estimated at about 60%) as energy generators in hydraulic drive systems [9]. This is 
owing to their simple and compact design, operational reliability, high resistance to 
working medium pollution, high efficiency and small overall dimensions in comparison 
with other pumping units. Nevertheless, despite their numerous advantages, pumps of this 
kind because of their noisiness and nonuniform delivery are considered to be inferior to 
other pumps [2, 3, 4, 7, 9]. It has been attempted to reduce the noisiness of gear pumps in 
either of the two ways: 

a) the active way, consisting in removing the causes of the noise or reducing noise 
emission in the noise source itself; 

b) the passive way, consisting in reducing the propagation of sound waves from the 
source of their emission, through scattering or absorption. 

The noise is  most effectively reduced through a combination of the two ways (the 
active way being the most effective of the two). Detailed studies have shown that the 
noisiness of the displacement pump is due to the flow of the working medium (Fluid Born 
Noise) and to the vibrations of its structural components (e.g. the unbalance of the rotating 
parts, excessive clearance in the moving joints, improper workmanship and assembly). The 
main causes of noise generation, having the most significant bearing on the sound pressure 
emission level, are the pressure fluctuation on the delivery side and the trapping of the fluid 
in gear wheel tooth spaces [5, 10]. 

The classification is an important stage in the analysis of acoustic properties. In this 
stage, properties characteristic for signals of particular microphones are compared with 
each other. On the basis of obtained results a decision concerning the classification of the 
signal properties. Among the most often applied methods of recognising acoustic signals 
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are: HMM ( Hidden Markov Models) [16], VQ (Vector Quantization) [17], LVQ (Learning 
Vector Quantization), SOM (Self- Organising Maps) [15], ANN (Artificial Neural 
Network) [13]. The present study is limited to the analysis of the acoustic properties of a 
gear pump with tooth root relief, in particular with the use a neural network.  

 
2. Tested pump 

 
The designed and built prototype pump [8, 10] has a three-plate structure shown 

schematically in Fig. 1. The front plate (1) is used for mounting the pump on the drive unit. 
The middle plate (2) contains gear wheels, slide bearing housings and suction and forcing 
holes for connecting to a hydraulic system. The whole construction is closed with a rear 
plate (3). 

 
 

 
 
 
 
 
 
 
 

 
Fig 1. Three-plate design of gear micropump with external meshing. 

1 – front (mounting) plate, 2 – middle (rest) plate, 3– rear plate, 
4– driving shaft. 

 
The tested prototype unit was designed in-house and manufactured by the Hydraulic 

Pumps Manufacturing Company Ltd. in Wroclaw. The pump was designed having in mind 
the technological capacities of this company. The novelty of the prototype pump consists in 
the modification of the involute profile in its upper part through the so-called tooth root 
relief (undercut) [8, 10].  
 
2.1. Measuring rig. 

The reverberation chamber for acoustic testing meets standard ANSI S1.21-1972 and 
standard PN-85/N-01334 and can be used for the vibration and noise certification of 
machines and equipment. The chamber’s sound insulating power against external noise in a 
frequency range of 20-20 kHz amounts to 50 dB. This insulating power ensures the 
elimination of disturbances originating from the drive system and from the hydraulic 
system supplying the tested pump. 

Figure 2 shows a schematic of the rig for the testing of acoustic parameters. For 
measurements the tested pump together with a microphone array was placed in a 
reverberation chamber. 
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Fig 2. Block diagram of gear pump noisiness measuring rig: KA-calibrator, MC-
eight free sound field microphones, MU-multiplexer, WP-instrumentation amplifier, AF-

two-channel frequency analyzer, PC-computer, PZ-gear pump, KO-chamber 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Reverberation chamber 

3. Acoustic research 

 Acoustic measurements of an experimental version of the pump respectively for the 
value of discharge pressure pt: 0, 2, 4, ..., 30 [MPa] and the frequency f: 25÷20k [Hz] have 
been obtained in the analysis. Table 1 shows exemplary acoustic measurements of a gear 
pump after tooth root undercutting for pt = 12 MP [9]. 
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Table 1. Acoustic measurements of a gear pump after tooth root undercutting for pt = 12 MPa 
f [Hz] number of microphone Thirds Octaves 

 1 2 3 4 5 6 7 8 Lmj Smj KAj LAj Lmj LAj 

 -1.48 -0.15 -0.20 0.33 0.16 -0.10 0.26 0.42       

25 84.1 81.8 62.5 46.8 65.4 83.8 82.4 78.1 80.1 15.4 -44.7 35.4   
31,5 62.3 60.0 54.9 40.0 56.8 63.7 60.3 62.0 60.1 8.0 -39.3 20.8 80.2 40.9 
40 58.9 49.4 58.5 55.7 52.9 51.8 46.4 53.7 54.7 4.3 -34.6 20.1   
50 70.8 67.8 74.2 74.9 73.0 66.0 65.3 62.2 71.1 5.0 -30.2 40.9   
63 71.7 76.4 76.1 75.2 71.9 66.0 78.4 59.6 74.4 6.8 -26.2 48.2 77.1 50.9 
80 75.4 73.0 67.1 69.8 64.9 63.8 68.7 69.0 70.1 3.8 -22.5 47.6   

100 69.9 64.8 60.9 61.9 65.4 65.1 60.8 62.8 64.6 2.7 -19.1 45.5   
125 74.6 73.3 75.1 66.6 71.0 66.2 68.5 70.0 71.5 3.3 -16.1 55.4 75.0 58.9 
160 69.8 69.1 70.5 69.5 68.6 74.1 71.9 75.1 71.8 2.8 -13.4 58.4   

200 81.8 71.1 76.8 74.0 69.4 78.2 76.5 74.0 76.3 3.8 -10.9 65.4   
250 83.0 72.6 79.8 76.3 73.0 80.2 79.5 75.9 78.4 3.5 -8.6 69.8 81.2 72.6 
315 77.1 68.8 73.4 70.6 75.0 72.6 74.0 65.7 73.0 3.5 -6.6 66.4   

400 83.4 80.6 80.2 69.9 69.7 79.6 73.2 74.2 78.2 5.2 -4.8 73.4   
500 84.2 81.3 80.5 71.4 70.8 80.6 74.4 75.1 79.0 4.9 -3.2 75.8 81.9 78.7 

630 65.4 67.1 69.4 71.3 73.8 68.2 70.4 71.8 70.5 3.4 -1.9 68.6   

800 60.7 60.9 63.9 62.5 64.1 63.1 69.5 63.8 64.6 3.3 -0.8 63.8   
1 k 61.8 63.4 65.9 63.5 63.1 63.4 71.7 65.7 66.2 3.8 0 66.2 71.4 71.4 

1,25 k 68.8 68.8 71.2 69.7 67.8 66.5 65.8 66.6 68.4 1.8 0.6 69.0   

1,6 k 72.5 69.3 68.9 68.1 70.8 70.8 67.1 65.4 69.3 1.9 1 70.3   
2 k 72.3 72.0 72.2 70.4 69.6 72.9 71.1 71.3 71.5 0.9 1.2 72.7 74.8 76.0 

2,5 k 70.2 69.2 70.3 69.2 67.1 68.3 69.3 67.3 68.9 1.0 1.3 70.2   

3,15 k 66.2 68.5 67.4 65.9 65.9 66.9 65.0 66.0 66.5 1.1 1.2 67.7   
4 k 69.4 69.8 69.7 68.2 66.0 68.9 67.7 67.4 68.4 1.1 1 69.4 71.6 72.6 
5 k 67.5 65.1 65.2 65.4 62.5 63.5 64.3 63.0 64.6 1.2 0.5 65.1   

6,3 k 67.7 64.0 63.1 64.9 63.5 62.5 66.1 63.8 64.6 1.5 -0.1 64.5   
8 k 68.6 65.5 65.2 64.3 63.2 65.2 64.2 64.4 65.1 1.1 -1.1 64.0 69.3 68.2 

10 k 65.5 65.6 63.5 63.1 64.3 63.8 62.9 61.9 63.8 0.9 -2.5 61.3   

12,5 k 66.1 63.0 63.2 62.4 61.7 61.9 60.8 62.7 62.8 1.1 -4.3 58.5   
16 k 59.6 57.7 56.3 58.3 56.3 54.9 55.0 55.2 56.8 1.4 -6.6 50.2 63.9 57.3 
20 k 53.2 51.4 49.8 49.3 49.0 47.3 47.7 47.6 49.6 1.6 -9.3 40.3   

 
Figure 4 presents the value of the acoustic pressure level Lm, corrected acoustic pressure 
level LA, acoustic power level Lp and corrected acoustic power level LpA in the function of 
discharge pressure pt at a constant rotational speed of a pump shaft n = 1500 rpm. 
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Fig. 4 The noise of the gear pump after tooth root undercutting for nominal rpm. 

 
Figures 5 present  a tertian and an octave spectrum of the gear pump after tooth root 
undercutting for nominal discharge pressure and nominal rotational speed. 
 
 

 

      

 

 

 

 

 

 

 
 

Fig. 5. The tertian spectrum of an experimental unit for nominal pressure and rotational 
speed. 
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Figures 6 compare a corrected level of the acoustic pressure LA, and the corrected level of 
the acoustic power  LpA  of an experimental unit and pump PZ4-32 TKs 186. In both pumps 
the teeth of wheels grinding has been made before and after nitriding. 
 

 
Fig 6. An octave spectrum of an experimental pump and PZ4-32 TKs-186 for pt =18 MPa. 

 
Table 2. Comparison of octaves of the centre frequency equal to 2k Hz for an experimental 
pump and PZ4 TKs 186. 

pt [MPa] Pompa badawcza 
LA(1)

2000 
PZ4-32 TKs 186 

LA(2)
2000 LA

2000 
 

 2000
)1(

2000
)2( 1,01,0 1010log10 AA LL   

6 74,7  [dB] 79,5  [dB] 4,8 [dB] 77,8  [dB] 
12 74,8  [dB] 79,5  [dB] 4,7 [dB] 77,7  [dB] 

18 78,2  [dB] 83,6  [dB] 5,4 [dB] 82,1  [dB] 

24 81,0  [dB] 83,0  [dB] 2,0 [dB] 78,7  [dB] 
28 82,9 [dB] 83,6  [dB] 0,7 [dB] 75,3  [dB] 

 
4. Application of neural network to the recognize the acoustic properties 

The classification is an important stage in the analysis of acoustic properties. In this 
stage, properties characteristic for signals of particular microphones are compared with 
each other. On the basis of obtained results a decision concerning the classification of the 
signal properties to a given group is made [6, 13, 14].  

The present study is limited to the analysis of the acoustic properties of a gear pump 
with tooth root relief, in particular with the use o game graphs and neural networks.  
Figure 7 presents a graph showing the correctness in the scope of the layout of the acoustic 
pressure level – with taking into consideration all microphones – depending on the value of 
frequency and the discharge pressure. It is possible to observe an empirical reduction in the 
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level of acoustic pressure in all microphones with the increase in frequency and decrease in 
discharge pressure.  

 
 
Fig 7. The layout of acoustic pressure of  8 microphones depending on the frequency value 

and the discharge pressure 
 
Figure 8 presents a tertian spectrum of the pump noise with taking into values of particular 
8 microphones depending on the frequency and the level of acoustic pressure. 
 

 
Fig 8. The tertian spectrum of the pump noise with taking into consideration  values for 

particular 8 microphones depending on the frequency and the discharge pressure 
 
In a typical attitude to the computer-based analysis of signals, it is assumed that there is 

a hierarchy of three data processing levels [13, 14]. In the scope of each of them, there are 
three stages of processing: 
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1)   an analysis in time – acquisition of a signal tone and the useful signal detection,  
2)   a spectrum analysis – transformation of signal frames (windows) in the frequency 

domain, 
3)  speech signal parametrization – designation of vectors (numerical) properties of           

signal frames / windows.  
Figure 9 presents preliminary signals processing without a filter for 8 microphones in the 
whole range of values of discharge pressure that is  2-30 MPa. 
 
a)                                                                     b)   

 

Fig. 9. Initial processing of the signals for the two examples microphones: a)1, b)8 

A method of analysing a frequency spectrum has been chosen as a parametrisation method. 
A signal sample u(n) can be presented as a linear combination of samples for n>0. 

                                                      
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where: 

pa -  prediction rates,   p=1, 2, ..., P, P- prediction row 

( )u n - n sample estimator – the difference between ( )u n and ( )u n will be a prediction 
error e(n). 
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The method using this rule is called the Burg method, the implementation of which is 
included among others in the range "Signal Processing Toolbox" of the Matlab programme. 
Next, we create a signal spectrograms. In Matlab spectrogram command divides the signal 
into overlapping segments, windows each segment and forms the columns with their 
discrete Fourier transforms [1].  
The figure 10 shows the spectrogram for 2 examples microphones. 
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a)                                                                            b) 

 
                                                                                      

Fig. 10  The spectra of acoustic signals of two microphones a) 1 b) 8 

Neural networks are composed of single objects or indirect layers, playing a key role in 
the input signal processing into the final result. In the training process, it is essential to 
obtain such neuron weights on the sets of input and output data so that for a given input 
data set the same input data are obtained out of the training set.   

The most popular network training algorithm is the backpropagation algorithm. A 
multi-layer neural network of the Feed- Forward Backpropagation Network (F-F - BP) type 
(Figure 11) , in which each neuron had a sigmoidal activation function, was applied in the 
article aimed at recognising acoustic characteristics. 
 

 
 

Fig  11. Topology of the neural network used 
 

The training process of the applied network was made on the basis of the supervised 
learning. One of the main parameters determining the receipt of satisfactory results, from 
the point of view of recognising acoustic emissions of microphones was an appropriate 
choice of a training algorithm by the adopted SSN architecture. The following algorithms 
have been tested for the training procedure: GDA (Gradient Descent with  Adaptive 
Learning Rate Backpropagation) and RPROP (Resilent Backpropagation) [12].  
The weight correction process of particular neurones for this algorithm takes place 
according to the dependence described by the formula below:  
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where:  
 ( )k

ijn - individual learning coefficient for each scale, 

 ( ) ( )k
ij n - component of the gradient of the error function, 

 a, b- stałe, maxn =50, minn =10-6 
 
Figure 12 presents the efficacy of recognising analysed acoustic characteristics by the 
training procedure GDA and RPROP. 
 

 
  

Fig 12. Comparison of the effectiveness of the recognition of acoustic signals, depending 
on the type of training algorithm 

 
A parameter which can be used to build the training and testing SSN vectors was the use of 
results of the time and frequency analysis with the use of the Short Time Fourier Transform 
(STFT). Figure 13 presents the total efficiency of acoustic signals recognition of eight 
analysed microphones.   

The last stage was an appropriate choice of the size of the hidden layer of the applied 
classification tool. 
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Fig 13. The total efficiency of the recognition of the analysed acoustic signals by SSN 
depending on the level of acoustic pressure Lm, frequency kHz and discharge pressure for 8 

microphones.  

6. Conclusions 
 
     The aim of calculations was to determine such a structure of the adopted SSN 
architecture, which, apart from reaching a satisfactory total efficiency of recognition 
(SKUT > 90%), would be characterised by a relatively short time of required patterns 
acquisition. The most favourable results from the point of view of data processing time-
consumption are obtained for LNWU in the range from 20 to 70. The classification is an 
important stage in the analysis of acoustic properties. The obtained results connected with 
the application of SSN and induction tree classifiers to the efficient identification of 
acoustic signals on the basis of among others frequency and time-frequency analysis 
indicators showed that there is a potential possibility of using the suggested classifiers 
during the construction of the computerised expert system (SE). The adopted architecture of 
the neural network could form one of the most important elements of the SE that is to be 
formed in the future that is its inference mechanism. The task of the SSN presented in the 
paper would be to constantly compare the measured and correctly parameterised acoustic 
signals from eight microphones with the indicators collected in the data base based on the 
acoustic empirical studies of the gear pump after tooth undercutting.   
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