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Abstract: The work introduces the problem of condition-based prognosis algorithms via 
estimation in machines operating industrial process, this paper aims to exposes a formal 
mathematical framework on technical condition-based prognosis process to industrial 
machines, the work is focused on describing the details of each step associated with data 
processing-analysis, with emphasis on: optimization procedure of diagnostic parameters set; 
and machine condition prognosis methods. The study has developed a systematic structure 
of rules basis of machine condition prognosis process based on the technical conditions 
methods. In order to illustrate an application of the study to a real industrial machine case, 
this work is applied to researches of combustion engines referenced as type UTD-20, the 
laboratory test was made in stationary condition. 
 
Keywords: condition - based maintenance, machine condition prognosis, construction state 
prognosis, procedure of algorithm. 

 
 

1. Introduction 
 

The online machines condition prognosis process is useful for condition-based 
maintenance decision making in order to prevent unexpected machine breakdown, human 
injuries, and costs due to loss of productivity [10]. 

The main advantage of Preventive Maintenance (PM) strategies based on the scientific 
approach is that decision making is based on facts acquired through real data analysis. In the 
literature, PM based on the scientific approach can be classified into two techniques: (i) 
comprehensive-based; and (ii) specific-based techniques. The specific-based technique, as 
its name implies, is a specific maintenance technique that has unique principles for solving 
maintenance problems, examples of specific-based technique are time-based maintenance 
(TBM) and condition-based maintenance (CBM) [1]. CBM is a maintenance program that 
recommends maintenance decisions based on the information collected through condition 
monitoring. It consists of three main steps: (i) data acquisition -information collecting-; (ii) 
data processing -information handling- analyse the data or signals collected; and (iii) 
maintenance decision-making [8]. Nevertheless, prognosis is a relatively new area and 
becomes a significant part of CBM of systems [9]. 

The machine condition can be either directly observed from monitoring instruments or 
extracted from raw condition monitoring signals. In a problem of machine condition 
prognosis, observations of a machine condition k available up to last measured time point 
b are used to predict one at future time point of interest b1 [10]. As observations are 
updated k, machine condition values are successively predicted for future time observation 
point b1. This problem is virtually a time series prediction problem. Data-driven approaches 
can be used to address this problem [8]. Another problem is how many essential observations 
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k are used for forecasting the future value, so-called embedding dimension, the value of the 
dimension should be chosen large enough for the predictor to estimate accurately the future 
value of machine condition and not too large to avoid the unnecessary increase in 
computational complexity [12]. 

Solving these problems depends on many factors relative to: level of machine complexity, 
application of multi-symptom observations, and exploitation process quality. The machines 
prognosis is a process which ought to enable to know the a priori machine state, basis on an 
incomplete history of diagnostic tests results. It allows of estimate the time of a faultless 
machine usage or the value of work done by it in the future. Then, the machine condition 
prognosis process requires defining the following elements [13]: 

 the set of diagnostic parameters Y=<y1,...,yj,...,ym>, which depend on the optimization 
procedure of diagnostic parameters sets, the machine working time, and the quality 
of recording data time step;  

  the machine prognostic method used, which depend on the prognosis horizon, the 
minimal number of elements of time row indispensable for running the prediction, 
and the machine working time. 

The issue of machine tests for the prognosis process to estimate the technical state, as 
well as legal acts related to user safety and environmental protections are an impulse for 
searching new prognostic methods, determining new measures and tools describing the 
current state in the specific work condition of machines. This paper attempts to summarise 
the mathematical framework rules basis of machine condition prognosis process based on 
multi-symptom prognostic methods. 

 
2. Optimization procedure of diagnostic parameters sets 
 

Given a set of diagnostic parameters Y derived from the set of output parameters, based 
on tests results, and focused to: get a reduction of useful diagnostic information for the 
prognosis process; or confirming some included information premise about physical 
behaviour of the machine. The determination of diagnostic parameters set in the machine 
condition prognosis process must to have: 

 the ability to capture the machine state changes in exploitation time; 
 the whole quantity of information on the machine state;  
 relevant variability of diagnostic parameters values in the exploitation time. 
The above postulates can be presented using the following methods [13, 14]. 

 
2.1. Correlation method of diagnostic parameters values 

 
The method consists in examining the correlation procedure between each diagnostic 

parameter values yj, and the technical state of the machine W, then rj=r(W,yj) – coefficient of 
correlation of W and yj. Then, expressing this relationship in terms of the time of machine 
exploitation, rj=r(,yj), which is written as 
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where rj –coefficient of correlation between the variables k(1, b) (k –machine 
exploitation time) and yj; and in case of lack of data from the set W, data are replaced, 
assuming that the determination of state recognition procedures is realized within the range 
of normal wear, with the time of machine exploitation, then rj = r(k, yj) with Kk ,,1 
. 

 
2.2. Informational size of diagnostic parameter method 

 
Method focused to choice of the parameter which provides the largest quantity of 

information on the machine state. The relevance (in terms of sensitivity to change of state of 
the machine) of a diagnostic parameter yj, increases in relation to another yi, according to the 
next conditions: 

 if yj is more correlated to W, i.e. rj > ri;  
 if yj is less correlated to others diagnostic parameters, i.e. rj,n < ri,n. 
This relation is presented as the size indicator of the diagnostic parameter jh , which is a 

modification of the indicator relating to the set of variables explaining the econometric model 
[15]: 
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where  njnj yyrr ,,  , with mn ,,1  and nj   –coefficient of correlations between 

the variables jy  and ny ; in case of lack of data from the set W , they are replaced, assuming 
that the determination of state recognition procedures is realized within the range of normal 
wear, with the time of machine exploitation. 
 
2.3. Summary of parameters optimization methods 

 
An advantage of the presented methods is the fact that both allow of the choose single-

element as well as multi-element sets of diagnostic parameters from the set of output 
parameters. A single-element set refers case, when the machine is decomposed into units, 
and it is necessary to choose one diagnostic parameter. A multi-element set is acquired when 
in presented procedures less strict limitation is used [7], which consists in classifying into the 
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diagnostic parameters set these parameters whose indicator values are higher (lower), 
accepted respectively for the method, high (low) positive numbers. 

The general methodology for estimating the optimal parameter set of machine diagnosis 
consists to next stages [14, 15]: 

 
2.3.1. Data acquisition 
 

 the set of diagnostic parameters values in the function of machine exploitation time 
{yj(k)}, acquired in the time of passive-active experiment realization, where 
k(1, b); 

 the set of diagnostic parameters values: {yj(1)} –nominal values, {yjg} –boundary 
values, j=1,…, m;  

 the set of machine technical state {k: {si}, k=1, …, K; i=1,…, I} determined in the 
time of passive-active experiment realization, where k(1, b). 
 

2.3.2. The optimization of diagnostic parameters set values 
 
The optimization of diagnostic parameters set values (only in case of large size of Y, e.g. 

m>10). Diagnostic parameters set estimated via: 
 correlation method of technical state diagnostic parameters (exploitation time), 

rj=r(W, yj), (rj  = r((, yj)); and 
 method of technical state diagnostic parameters information quantity jh . 
In order to choose a diagnostic parameters set, the weight values used: 
 standardized calculation weights w1j, 
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 as the criterion of diagnostic parameters selection, the maximization of the values 
of weights w1j, and the diagnostic parameters selection according to the information 
quantity hj, are accepted;  

 in order to get a clear methodology, it is necessary to insert the auxiliary weights w2j 
(standardized values) from the range (0,1) and choose parameters according to the 
above criterion. 

 
3. Machine condition prognosis methods 
 

The machine technical state prognosis process can be realized by different methods [2 - 
6]: forecasted symptom value, machine operation date or another for machine state prognosis 
(e.g. extrapolation trend methods and adaptative methods). CBM uses the diagnostic 
parameter value change in function of machine exploitation. then uses the assumption that 
the phenomenon of the machine technical state worsening is represented by the time row 
y=<y1,y2,...,yb>, i.e. the set of discrete observations {y=(); =1,2,...,b} of a certain 
non-stationary stochastic process (). 
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An acceptable period of the machine usage is the working time delimited by the 
boundaries of damage range, then the period of use of the machine is determined in the subset 
y, which is derived from the set of optimized observation parameters {yj()} and their 
prognoses {yj,p} according to the accepted predictor P(y,) do not exceed the boundary 
values {yj,gr} [16]. 

The date of the next diagnosis-observation term b1 of the machine is therefore 
determined by the prognosis time horizon * by different methods [14, 16, 18]: 

 levelling method of prognosis error value; 
 levelling method of the diagnostic parameter boundary value; 
 method of determination of diagnostic parameter value change (symptoms method); 
 estimation methods of diagnosis and the operations date. 
 

3.1. Levelling method of prognosis error value 
 
For which there will be no excess of the diagnostic parameter boundary value gry  by the 

boundary of the prognosis error range appointed by the radius r (Fig.1). The acceptable value 
of next diagnosis-observation term 1b  are determined by the horizon value * , appointed 

as the intersection point of the line of diagnostic parameter boundary value gry  with the 

bottom (with the assumption that gr1)( yy  ) or top (with the assumption that 

gr1)( yy  ) boundary of the prognosis error range, which is appointed by the radius r for 

the trust level 95.01    or 99.01  , which corresponds to the probability of the 

value 05.0p  or 01.0p  that in the range appointed by the horizon *  the diagnostic 

parameter will reach the boundary value gry .  
Then, it is possible to infer the following statements: 
 not exceeding the controlled diagnostic parameter the boundary appointed by the 

radius 01.0
r  is interpreted as the alarm signal for thorough and more accurate 

diagnostic observation of the industrial machine unit or system; 
 exceeding the controlled diagnostic parameter the boundary appointed by the radius 

01.0
r  is interpreted as the lack of alarm signal for thorough and more accurate 
diagnostic observation of industrial machine (alert threshold); 

 the moment of exceeding by the controlled diagnostic parameter the boundary 
appointed by the radius 01.0

r  is interpreted as the time b1 –the operation date of 
the industrial machine unit or system (alert threshold). 
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Fig.1. Graphic interpretation of determining the date of next diagnosis-observation term 

b1: 1 – the beginning of machine’s exploitation, b –last operation of the machine, b1 – 
the date of next diagnosis-observation term 

 
In such situation, the time range (1, b) will be estimate period of the prognosis error 

expected value ep and the boundary radius of the prognosis error range r , whilst the time 
period after b will be the period of the active prognosis, i.e. estimation of: (i) the prognosis 
value of diagnostic parameter after prognosis horizon time , yjp(b+); (ii) the estimation of 
the value of boundary radius of the prognosis error range r(b+); and (iii) the estimation 
of the next diagnosis-observation term b1. 
 
3.2. Levelling method of the diagnostic parameter boundary value 
 

For which there will be no excess of the diagnostic parameter boundary value gry  by the 
forecasted value of the diagnostic parameter (Fig. 2). The date of the next diagnosis-
observation term b1 is determined by the horizon value *, and estimated as the intersection 
point of the diagnostic parameter trend line y() with:  

 bottom (with the assumption that grb )( yy  ) limit of the boundary value *
gry , 

grgr1
* )(

10
1 yyyygr  , (5) 

 or top (with the assumption that grb )( yy  ) order of the boundary value *
gry , 

gr1
* )(
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1 yyyy grgr  . (6) 

The values Sp(b+) and b1 are estimated with one of the prognosis methods, whilst the 
date of diagnosis and operation according to the relation 
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Fig.2. Determining the date of next operation of the devices b1 with the method of 

diagnostic parameter boundary value levelling for y(b) < ygr 
 

3.3. Method of determination of the diagnostic parameter value change  
 
For which there will be no excess of the diagnostic parameter boundary value gry  by the 

estimated value of the diagnostic parameter (Fig.3). The method has the following 
assumptions: 

 exponential decomposition of the diagnostic parameter at the time b; 
 probability of the machine reliable work rP : 8.01  rP ;  
 dynamics of the parameter S growth in the time (with S() < Sgr), 
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and the value b1 is estimated as: 
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Fig.3. Determining the date of next operation b1 of devices with the methods of the 

determining the diagnostic parameter change for Sgr > S(b) (periodicity of diagnosis in 
symptom depiction) 
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3.4. Estimation method of diagnosis and operation date 
 
In the date estimation method b1 the effort to simplify the procedures of date estimation 

b1 led to creating the date estimation method b1, in which there is no need to estimate the 
prognosis value of the parameter yp. In this method, like in the levelling method of the 
boundary value, a certain level of the boundary value ygr

* is determined, different from the 
boundary value ygr, e.g. according to the equations (5, 6) and compared to it the diagnostic 
parameter value. Then, as the date of the next diagnosis-observation term b1 it is suggested 
to accept the value of working time (course) of the machine, determined by the horizon value 
*, estimated as the intersection point of the diagnostic parameter value y(b) with the value 
ygr

*, 

bb  1 , (10) 

for which there will be no excess of the diagnostic parameter boundary value *
gry  by the 

value of the diagnostic parameter at the observation time b (Fig. 4). 
 

 
Fig.4. Determining the date of next operation of devices b1 with the method of value 

estimation b1 
 

3.5. Summary of machine condition prognosis methods 
 
The estimation of the date b1 on the basis of the presented methods is determined by 

many problems, most important of which are: 
 the determination of the optimal diagnostic parameter set describing the change of 

the machine state in function of its “lifetime”; 
 the determination of weight function for a multi-element optimal set of diagnostic 

parameters;  
 the determination of “the best” method for date estimation b1. 
The solution of the above problems, as it show in [14, 16, 19] requires the use of 

appropriate multi-criteria optimization methods and prognosis methods enabling the 
estimation of the prognosis value of the diagnostic parameter yj,p and the necessity to know 
the boundary value of the diagnostic parameter ygr. 

The suitable methods to technical state prognosis and to find the operation term estimation 
are: method of levelling the prognosis damage; and method of levelling the diagnostic 
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parameter boundary value. The algorithm of machine state prognosis includes the following 
stages [14, 17]: 

The prognosis of the diagnostic parameter value yj
*: 

 via Brown-Mayer adaptation method type 1 (B-M1) with the coefficient 
 8.01.0  , the prognosis horizon   31  determined by the time 

range (1,b), 
 via Holt adaptation method with the coefficient  8.01.01   and 

 8.01.02  , the prognosis horizon   31  determined by the time 
range (1,b),  

 via analytical methods (linear, exponential, etc.), the prognosis horizon 
  31  determined by the time range (1,b); 

The estimation of the next diagnosis-observation term d: 
 d1 via prognosis error levelling method for the radius of the prognosis error rp (for 

the importance level 05.0 ) according to the relation 
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where r –the radius of the prognosis error range (calculated a posteriori 
appropriately for each method of the prognosis value determination yj,p(b+)); 

 d2 via levelling method of the diagnostic parameter boundary value jgjg yy 1 , 

 jgjnjgjg yyyy  1  for jgjn yy  , and jgjg yy 1 , 

 jnjgjgjg yyyy  1   for jgjn yy  ,  e.g. for  =0.1: 
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4. Industry application – a case example 
 

In order to demonstrate that the exposed process may be applied effectively in  
engineering, this work is applied to researches of combustion engines referenced as UTD-20, 
the laboratory test was made in stationary condition, the engine was subjected to a series of 
tests obtaining a set of diagnostic parameters Y1 [13, 16] in the form of time rows whose 
elements are the values of diagnostic parameters: psil –engine power [kW], pspr –compression 
pressure [MPa], pwtr –fuel injection pressure [MPa], pol –engine oil pressure [MPa]. 
Examining procedures includes: 
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 examining the set of diagnostic parameters in the aspect of estimating an optimal set 
of diagnostic parameters for estimate the diagnostic parameters values according to 
the above exposed algorithm; 

 estimating prognosis methods of diagnostic parameters values and methods of 
estimating the next diagnosis-observation term according to the above exposed 
algorithm; 

 examining the prognosis value of diagnostic parameters with the prognosis damage, 
and the manner of estimating the next diagnosis-observation term depending on the 
following parameters: 
 prognosis value of diagnostic parameters values, 
 the size of the diagnostic parameters set,  
 the prognosis horizon. 

 
4.1. Optimization procedure of diagnostic parameters set 

 
Examining procedure of estimating the optimal diagnostic, the parameters set for the 

prognosis of diagnostic parameters values are: 
 estimating an optimal set of diagnostic parameters according to the above exposed 

process. For the set of output parameters Y1, the set of diagnostic parameters with 
appropriate weight values was obtained (Table 1). The result analysis showed that 
the highest weight values w1j are possessed by the diagnostic parameters pwtr and pol, 
and the lowest weight values w1j by the diagnostic parameter psil;  

 examining the optimal set of diagnostic parameters in the aspect of the influence of 
time row size through estimating weight values w1j for the set Y1 and the set Y2 in 
elation to the length of time row. For this purpose, time rows for set sizes: k=10, 
k=20, k=40, k=50 were considered. The result analysis in it field indicated that there 
are value changes of the weight wj1 in the function of time rows lengths. 

Summing up the performed researches for the optimization procedure of diagnostic 
parameters set, it is concluded that: 

 examining diagnostic parameters sets in the aspect of the influence of time row size 
for the set Y1 showed a considerable influence of time row length on estimating 
weight values w1j for the engine type UTD-20;  

 in examining the methodology of machine state recognition, it is suggested to accept 
diagnostic parameters of the highest weight values, e.g. for the combustion engine 
UTD-20: w1j  (0,02–0,05), in order to obtain a set of at least three (3) elements. 

 
Table 1. Set of an optimal set of diagnostic parameters to UTD-20. 

Y1 rj hj dj w1j 
psil 0,149 0,022 1,200 0,007 
pspr 0,364 0,132 0,740 0,011 
pwtr 0,597 0,357 0,01 0,858 
pol 0,578 0,335 0,069 0,122 

 
4.2. Machine condition prognosis methods 

 
Examining the procedures of machine state prognosis in the aspect of determining a 

prognosis method according to the prognosis error function, examining the influence of 
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prognosis horizon value on the prognosis damage, and examining the influence of diagnostic 
parameters set size on the prognosis damage, were realized on the basis of: determining the 
set of prognosis methods of diagnostic parameters values, and estimation method of the next 
diagnosis-observation term according to the above exposed process. For the set of diagnostic 
parameters Y2={pwtr, pol} (of the highest weight values), the visualization of their prognoses 
value was obtained (linear model, exponential model, Brown-Mayer model, Holt’s model), 
and two methods of determining the dates of next diagnosis-observation term (d1,d2) for 
three values of the prognosis horizon (=, =2, =3). An example visualization of 
analyzed values for the parameter pwtr (for Brown–Mayer model) is presented on Fig.5. 

 

 
Fig.5. Estimating the prognoses value of the parameter pwtr (weight w1=0,858) and date 

d(=, =2, =3) for Brown–Mayer model, type 1 (=0,2) 
 

The analysis of research results for the combustion engine type UTD-20 showed that: 
 different best (according to the minimum value of prognosis damage) prognosis 

methods of diagnostic parameters values are accepted: 
 for pwtr – Holt method (=0,1; =0,1), prognosis error = 3,02%,  
 for pol – Holt method (=0,1; =0,1), prognosis error = 3,39%; 

 different values of the next diagnosis-observation term are obtained in relation to 
the prognosis horizon and the size of the diagnostic parameters set: 
 for pwtr –Holt method (=0,1;=0,1), examination dates: d(=)=8775.62; 

d(=2)=86993.23; d(=3)=8610.85,  
 for pspr – Holt method (=0,1; =0,1) and pol – Holt method (=0,1; =0,1) 

weighed examination dates dw(=)=8740.03, dw(=2)=8622.07; 
dw(=3)= 8504.11. 

   Summing up the performed researches for the state prognosis method, it is stated that: 
 considering low values of the curvilinear correlation coefficient (< 0,8) and high 

values of prognosis damages, and negative values of the next operation dates of the 
examined objects in analytical models (power model, exponential model and 
exponential model) for potential applications, it is necessary to use the Brown–
Mayer model and Holt model;  
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 the accepted optimization criteria and the presented algorithm unambiguously 
identify the prognosis method and the method of estimating the next diagnosis-
observation term, which confirms the propriety of the formulated procedure, and 
will be the basis for examining the methodology of machine state recognition in the 
field of state prognosis for other objects. 
 

4.3. Summary of result analysis 
 
The analysis of research results of machine state prognosis methodology allows to 

formulate dedicated conclusion rules of type “IF – THEN” or “IF – THEN – ELSE” in the 
area of: diagnostic parameters optimization; and state prognosis. In case of the combustion 
engine UTD-20, the generated rules have form: 

 for diagnostic parameters set Yo: 
 if w1j  0,05 then yj Yo, 
 or if w1j =  w1jmax then yj Yo; 

 for state prognosis: 
 if w1j = w1jmax and if w1j  0,9 then yjYo and the set Yo is a single-element set,       

Yo =Yo1, 
 if w1j = w1jmax and if w1j < 0,9 then yjYo and the set Yo is not a single-element 

set, Yo = Yoo, 
 if the prognosis error of Holt method (with appropriate values of the 

parameters , ) for the set Yo1< prognosis error of the Brown–Mayer method 
(with an appropriate value of the parameter ) for the set Yo1, then the method 
of value prognosis of the set v is the Holt method (with appropriate values of 
the parameters , ), otherwise the prognosis method of the value Yo1is the 
Brown–Mayer method (with an appropriate value of the parameter ),  

 if the value of the next diagnosis-observation term of the engine UTD-20 d1 
(Yo1)  value of the next diagnosis-observation term of the engine d2 (Yo1), 
then the method to estimate the next examination date of the engine is the 
method of levelling the prognosis error value, otherwise it is the prognosis 
method of diagnostic parameter boundary value, 

 if the prognosis damages for methods: Holt (with appropriate values of the 
parameters , ) or Brown–Mayer (with an appropriate value of the parameter 
) for diagnostic parameters of the set Yoo take minimum values, then 
prognosis methods of values of appropriate diagnostic parameters of the set Yoo 
are the above methods, 

 if the value of the next examination date of the engine UTD-20 d1 (Yoo)  
value of the next examination date of the engine d2 (Yoo) then the method to 
estimate the next examination date of the engine (for the considered diagnostic 
parameter) is the method of levelling the prognosis error value, otherwise it is 
the prognosis method of diagnostic parameter boundary value,  

 if the value of the next examination date of the engine UTD-20 d is 
determined for Yoo, then this values is the weighed value of the value dw. 

The presented conclusion rules in range of machine state prognosis, after performing 
appropriate verification researches, could be the basis for dedicated software of a machine 
state recognition system in an on–line mode (for an on-board system) and off–line (for a 
stationary system). 
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5. Concluding remarks and future work 
 

The work has defined a systematic structure of the rules of thumb of machine condition 
prognosis process based on the technical conditions methods, focused on optimization 
procedure of diagnostic parameters set; and machine condition prognosis methods. 

The presentation of machine state prognosis procedures allows to formulate that 
presented procedures allow to determine the optimal, as far as the accepted criterion is 
concerned: diagnostic parameters set; and diagnostic parameters values prognosis and 
machine operation date estimation. 

In order to determine the set of diagnostic parameters and state prognosis, the above 
presented procedures can be the basis for estimating conclusion rules in the range of: 
determining an optimal set of diagnostic parameters; and estimating the values of diagnostic 
parameters in the future, and estimating the date of the next machine operation. 

From the concept/principle point of view, the application to the exposed real industrial 
machine case (combustion engines referenced as type UTD-20) allows to affirm the 
following technical observations: 

 the accepted optimization criteria unambiguously identify sets of parameter values 
with largest quantity of information on technical state changeable in time of 
exploitation of the engine UTD-20, which confirms the propriety of formulating 
optimization procedures of diagnostic parameters set. 

 for the combustion engine UTD-20 the order of parameters pwtr, pol, pspr, Psil are not 
sustained, which indicates that the accepted criteria for parameter sets of real objects 
unambiguously identify sets of parameter values changeable in time of machine and 
having the highest quantity of information on the machines technical state. 
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