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Abstract: In this paper, we consider a software testing platform employing cloud 
computing services with homogeneous-treated machines based on real-life system. We 
describe the system and its characteristics. We treat the testing process as a job scheduling 
problem and develop a mathematical model for this problem. Then we assess the quality of 
the model by comparing with the data collected from the actual system. We also apply 
Simulated Annealing metaheuristic for the purpose of scheduling jobs and compare it with 
several constructive algorithms against several goal functions. 
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1. Introduction 
 

Software testing is one of the most important steps in the software development life 
cycle and in certain cases may require 40–70% of the total development costs [1]. 
The importance of software testing has increased over years, resulting in more advanced 
testing techniques. Automatic software testing and providing stable and uniform testing 
environment are examples of areas of interest in this topic. One of possible solutions for 
achieving above goals is the use of cloud computing. Existing cloud models like Software 
as a Service (SaaS) can be extended to obtain Testing as a Service (TaaS) model [2]. 
Existence of such system naturally raises some issues with managing the workflow of the 
testing process, leading to several discrete optimization problems. 

In this paper, we consider a private TaaS system used by Nokia corporation with the 
main purpose of improving the workflow of the testing process. To this end we describe the 
system and its most important properties before constructing a mathematical model. The 
developed model could be then used to simulate the system and test various optimization 
algorithms. We model the optimization of workflow as a specific job scheduling problem 
and we consider several possible goal functions. 

The remainder of this paper is organized as follows. In section 2 we present a brief 
literature overview, focusing on scheduling problems in cloud computing. In sections 3 and 
4 we describe the system and formally model the problem of managing the workflow of the 
system as a job scheduling problem. In section 5 we describe the solving methods used on 
the developed model. Section 6 contains research concerning the quality of the developed 
model and performance of the solving methods. Finally, section 7 contains conclusions. 
 
2. Literature overview 
 

For the past two decades cloud computing has been a quickly developing concept, 
attracting a great deal of scientific and business attention. It can serve variety of roles, but 
generally allows companies easy access to vast computing resources (ranging from 
hardware to virtual environments and software) regardless of private resources of the 
company. Its ability to provide flexible, reliable and scalable solutions has been proven by 



IT giants such as Amazon, Google, Microsoft, IBM and HP among others. In result, a great 
number of implementations of the idea of cloud computing were created. More information 
about new developments and challenges in creating and managing clouds can be found in 
review by Zhang et al. [3]. 

Testing as a Service (TaaS) is a relatively new concept, aimed as tailoring cloud 
resources for use with software testing. TaaS can be used for wide range of software, from 
tests for telecommunication companies (as shown in this paper) and mobile devices [4] to 
the test of clouds themselves [5]. Detailed overview, and study of possibilities of TaaS was 
shown by Gao et al. [6]. 

One of the most important aspects in cloud computing is workflow management, which 
can be understood as assignment of tasks to cloud resources. Since clouds are usually 
distributed systems, this workflow management problem can be understood as a specific 
online job scheduling problem for sophisticated computer networks (like grids). Due to 
widespread use of clouds, job scheduling in cloud and grid environments have been the 
target of considerable attention of researchers around the world. Here, we will name just 
a few examples. 

Pooranian et al. [7] developed GLOA evaluation algorithm inspired by behavior of 
leaders in social group to minimize makespan in a geographically spread grid. Similarly, 
Mateos et al. [8] developed Ant Colony Optimization-inspired algorithm to minimize 
weighted flowtime in cloud environment for a Parameter Sweep Experiments application. 
The research performed on real PSE data show decreased completion time compared to 
other methods. Taheri et al. [9] employed Artificial Bee Colony method for both scheduling 
of jobs and replication of data in grid computing. Computer experiments against three 
benchmarks proved the superiority of the developed method. 

Most of approaches consider only-criterion goal functions, however multi-criteria 
approaches also appear. For example, Rudy and Żelazny [10] developed an online hybrid 
memetic algorithm based on NSGA-II method enhanced by local search procedure for 
network scheduling problem. They considered several criteria (mean penalty of tasks, 
makespan, maximum penalty among others) and used to define four different goal 
functions, each composed of two or three criteria before testing the performance of the 
developed algorithms against commonly used constructive algorithms. 

Less common, but not less important are hybrid approaches, combining more than one 
method. For example, Shojafar et al. [11] performed job scheduling for cloud environment 
using genetic algorithm method, enhanced by fuzzy theory. Fuzzy rules are used to 
transform linguistic terms (like "low length of job") into fitness value ("medium", 
"adequate" or "inappropriate"). More information about various methods of solving job 
scheduling and workflow management problems in grid and cloud computing can be found 
in works [12,13]. 
 
3. System description 
 

The system under consideration is a private TaaS platform in Nokia corporation. Its 
purpose is to provide automatic testing capabilities for testers and developers of the 
management plane (M-Plane) software which is crucial part of the Nokia’s base station 
product. The system can be divided into three parts: (1) cloud resources, (2) TaaS toolkit 
and (3) end users. Elements (2) and (3) are in-house (provided by Nokia) although they are 
distinct departments in the structure of the company. Element (1) is provided by an external 
vendor. 



3.1. Cloud resources and TaaS toolkit 
 
Cloud service is provided by a few data centers clustered around a single geographic 

region. Such configuration is beneficial for the platform, ensuring low and reliable network 
latencies. The cloud is heterogeneous by default, allowing for a broad variety of obtainable 
virtual machine configurations. It is possible to launch instances ranging from very small 
(1 core, 2 GB of RAM, 25 GB of disk capacity) to very large (40 cores, 200 GB of RAM, 
1280 GB of disk capacity). However, for the software testing process uniform 
configurations with 2 cores, 8 GB of RAM and 25 GB of disk capacity are used. All 
configurations use the same operating system. Distributed storage is provided by the 
vendor’s distributed object storage solution compatible with Amazon’s simple storage 
service (S3). 

The TaaS toolkit serves as overlay between the cloud resources and the end users. It is 
a set of software tools dedicated to organizing and processing the whole platform workflow 
across distinct layers of the TaaS architecture. Currently all the tools are command line 
interface (CLI) applications developed within the company. They have various purposes 
such as test suite gathering, handling and monitoring of users' requests, job scheduling and 
dispatching, monitoring and management of the cloud resources and providing feedback 
among others. The toolkit also includes the second, in-house distributed storage solution 
based on SFTP service. 

 
3.2. System workflow 

 
The input of the system are test suites, each composed of at least one test case. As the 

platform is dedicated for integration testing, every test case is assumed to be coarse-
grained. It means that the single test case needs exclusive access to a single virtual machine 
for the time of its execution. This strong assumption cannot be weakened since M-Plane 
software integration testing involves many executables and use of low level system calls. 

Test suites are provided by the testers, developers and continuous integration robots, 
which are generally referred to as clients. To be processed by the TaaS platform, test suites 
must be submitted to the system. Such submissions can be performed by using 
a TaaS toolkit. The most important tool is local job dispatcher, which resides on each client 
machine. The purpose of the dispatcher is to map the test cases to the cloud resources. Such 
solution is insufficient as the local dispatchers invoked by the clients are competing with 
each other for access to the virtual machines. Furthermore, the dispatchers are not aware of 
each other existence. Hence, such architecture makes it impossible to implement more 
sophisticated forms of coordination and optimize the workflow. The overview of the 
architecture of the system and testing process is shown in Fig. 1. 

 
3.3. System properties 
 

The described system is real-life platform and have been working for some time, 
making it possible to perform case study and obtain some statistical data, which could 
prove useful in developing solving methods. In this subsection, we will discuss several such 
properties. This data (henceforth called history) was collected over the span of 30 days. 
This history contained 2 021 104 test cases grouped into 24 718 test suites (yielding 55 test 
cases per test suite). 

 



 

Fig. 1. Structure of considered TaaS system, showing clients, test suites, 
local dispatchers, cloud resources and submitting of test cases 

 
Let us start with the analysis of the execution times (durations) of test cases. The 

histogram of execution times collected from the 30-day history of the running system is 
shown in Fig. 2. We see that a single test case may require anywhere between a few 
seconds to 10 minutes to complete execution. However, almost all test cases complete in 
under 3 minutes and majority of them takes no more than a minute. Moreover, duration of 
a test case is not fixed, instead it is dependent on the result of the test case (success, failure, 
error code) and the current state of the cloud (e.g. network transfer). Shown durations does 
not include the initial setup step where data must be transferred between client and the 
particular cloud resource. However, in practice such setup times are very small – ranging 
from 1 up to a few seconds. Thus, in this paper setup times are treated as constants and 
added to duration of test cases. 

Fig. 2. Histogram of execution times of test cases 



Next, and one of the most crucial, facts about the considered system is that a single test 
case will most likely be executed again in the future when the next version of software is 
tested. In result, test cases are repetitive, executed many times during system activity. This 
is extremely important as the test case durations are not known a priori. In fact, the longer 
system is working the easier it is to durations of test cases as they are more likely to appear 
in the history. Of course, history recording is required for this  and such technique will not 
work for new, not previously encountered test cases. 

In order to research this particular property, it is convenient to define several notions. 
First, let each define test cases types (or test types for short). For example, in Fig. 1. there 
are five test cases, but only 4 test types: X, Y, Z and Q. Test type X occurs twice, so second 
occurrence of test case of that type is a repetition. Next, let us define a parameter called 
repetition coefficient for each test suite. Let test suite S contain m test cases. Now if exactly 
n of those test cases are repetitions (i.e. test cases of their test type were executed at least 
once before) then repetition coefficient is given as: 

 

( )
m
n=SR . (1) 

 
 

Naturally, value of repetition coefficient ranges from 0 (0% of test cases in a suite occurred 
before) to 1 (100% of test cases occurred before). Now we can define a function where 
arguments are subsequent test suites (in history order) and the values are repetition 
coefficients for each test. Such function is presented in Fig. 3. 

We can see that at the beginning test suites have R(S) near zero, but after several 
hundred test suites the values are approaching one. Let us also note that the function is not 
increasing or even non-decreasing – completely new test cases may appear, making it 
possible for subsequent test suites to have lower R(S) than the test suite immediately before 
it. However, such events are rare. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Function of repetition coefficient for subsequent test suites 
 

 



In addition to Fig. 3. let us present some more data concerning test case repetition. In 
aforementioned history of 2 021 104 test cases there were 6520 different test types in total. 
A single type had between 0 to 4566 repetitions (appeared in 1 to 4567 test suites) with 307 
repetitions on average. Moreover, 588 test types appeared in only one test suite (this is 9% 
of all test types and only 0.03% of all executed test cases). A test suite had 81.5 repeated 
test cases on average, resulting in R(S) exceeding 99% of test cases of that suite. After 350 
test suites, average R(S) exceeded 83%. We conclude that recorded history can be used to 
estimate test case durations for the most of system lifetime. 
 
4. Problem description 
 

The problem considered in this paper can be described as a specific type of online job 
scheduling problem. There is a set M = { 1, 2, … , m } of m homogeneous machines. Next, 
a set J of jobs (test suites) to be completed is given. In general, the set J is given online (i.e. 
jobs can be added to the set as it is processed). For the purpose of this paper we can assume 
time boundaries. Thus, set J = { 1, 2, … , n } has fixed size and consists of n jobs. Job 
j consists of tj operations (test cases) numbered from 1 to tj. Job j arrives at time aj. Let us 
also define sequence T = { 1, 2, … , t } of all operations, ordered by the jobs i.e. operations 
from 1 to t1 belong to job 1, operations from t1+1 to t1 +t2 belong to job 2 and so on. The 
total number of operations is given by t: 

 

∑
n

=j
jt=t

1
. (2) 

 

We assume the processing time of each operation is fixed. Processing time of the i-th 
operation in set T is given by pi. Alternatively, processing time of i-th operation of j-th job 
is given by j

ip . 
Each of the operations in T can be processed by any machine and the order of execution 

of operations in a job does not matter, similarly to the order of execution of jobs. However, 
execution of any job must be preceded by copying the necessary data files to the cloud. 
This is represented by a job setup time s (the same for all jobs). Also, let set Zj designate all 
operations from job j. 

The solution to the problem is given as a schedule which compromises of vector of 
operation start times S of size t. Si indicates the start time of operation i, according to the 
ordering in set T. Similarly, we can define vector C of completion times of operations. Let 
us notice that iii p+S=C . The schedule must be feasible, meaning that (a) any 
operation at any time can be executed by at most one machine, (b) any machine at any time 
can execute at most one operation, (c) operations cannot be interrupted (d) any operation 
cannot start execution before the arrival (release) time of its job. The goal is to find 
a feasible schedule S* which minimizes the given goal function K: 
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where Π is the set of all schedules. 
 



We consider four different goal functions. Let Fj be the flowtime of job j defined as 
follows: 
 

jj
j SC=F − , (4) 

 

where Cj and Sj are start and completion times of job j computed as: 
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where j
is and j

ic are start and completion times of the i-th operation in j-th job. 

The four criteria are: total (average) job flowtime ∑F , minimum job flowtime 

Fmin , maximum job flowtime Fmax and standard deviation of job flowtime σF , 
given respectively as: 
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5. Solving methods 
 

In order to solve the problem, we have considered both simple constructive algorithms 
as well as more advanced metaheuristics. Thanks to repetition coefficient exceeding 99% 
for relatively short history, we assume that all algorithms are clairvoyant i.e. processing 
times of all operations all known in advance. 

We start with constructive algorithms as they are simpler and one of them is already 
employed for use in the actual system (although performed by local dispatchers). All 
constructive algorithms share basic behavior: they collect incoming operations in a buffer 
and wait for available machines. Machine becomes available when it completes all 
operations currently assigned to it (machines are also available at the beginning of the 
algorithm). When both at least one machine is available and at least one operation in the 
buffer is awaiting assignment, then one operation from the buffer is chosen and assigned to 



arbitrary chosen available machine. Thus, all constructive algorithms work as per Least 
Busy Machine strategy and differ by the method of choosing the operation to assign. 

Perhaps the simplest of the constructive algorithms used in this paper is Crnd. It has no 
criterion of assignment and hence it assigns a random operation from the whole buffer to 
the next available machine. This might remove some form of bias other constructive 
algorithms may possess, but also makes the Crnd algorithm non-deterministic and highly 
unreliable and thus is rarely used in practice. However, when run enough times and using 
the best-found result Crnd can perform well and might be used as a reference point. 

Next constructive algorithm is Cmax which is currently employed in company for 
dispatching of jobs on local machines. It maintains a queue of operations for each buffered 
job and operations in each queue are sorted in ascending order (hence the name of the 
algorithm). When a machine becomes available a queue is chosen at random and the 
operation from the end of that queue is assigned to that machine. This version of Cmax is 
thus non-deterministic as well, but it was made that way to represent the algorithm 
currently employed in the company – local dispatchers compete for the cloud resources and 
might submit operations at random. Lastly, we consider Cmin algorithm which works the 
same as Cmax, but sorts the queues in descending order. 

Next we consider metaheuristic methods, which are slower and usually probabilistic 
methods but are easier to control and often provide better results. As the target algorithm 
must be both resilient and simple we have decided to use Simulated Annealing (SA) 
method, which is commonly used for both discrete and continuous optimization problems.  
As reported in [14], SA is a mature optimization method and its utility both in theory and 
practice was proven over the years. It has been also very successful in the field of job 
scheduling. As the computer hardware gets more powerful over time it is also desired for 
algorithm to be susceptible to parallelization. An example of fine-grain parallelization using 
SA method can be found in [15] where authors present two effective methods of parallel 
objective function computation. 

The SA metaheuristic used in this paper is a classical form of algorithm dedicated to job 
scheduling problem. The main assumption is that the operation execution times are known 
a priori. The solution is represented as a matrix where rows represent machines and 
columns represent operations assigned to the machines. Initial solution is created using 
constructive algorithm Cmax described above. Every new solution is obtained from the 
previous one by either swap of random two operations or move of random operation from 
machine mx to my into random column. The cooling scheme take the form of α(t) = t0 – i/I 
where i is the current iteration number and I is the total number of iterations (fixed at 
100 000). For an acceptance probability calculation, a classical exponential function was 
used. 
 
6. Computer experiment 
 

In this section, we present two computer experiments. First is aimed at presenting the 
quality of the developed model of the problem by comparing it with the historical data 
collected from the actual system. In the second experiment, we compare the performance of 
constructive algorithms and SA metaheuristic for a given queue of jobs/operations. 

We start by the evaluation of the quality of the developed model. To this end we 
consider instance consisting of a fragment of the historical data collected from the actual 
system. This fragment covers the span of several hours during which the number of 
machines remained constant. This instance contained 26554 operations and 188 jobs. It is 



important to note that on average 30% of operations of a given job were new i.e. had 
unknown processing times. The data contains not only the jobs, operations and their arrival 
times, but also recorded info about each job/operation start and completion times. 

Using the aforementioned instance, we have computed the values of the four goal 
functions that were obtained during the real-life work of the system. Note that actual 
system uses local dispatchers on client machines and those dispatchers employ Cmax 
constructive algorithm. Thus, that result was compared with the Cmax algorithm applied to 
our developed model for the same instance. Comparison results are shown in Tab. 1. 

 
Tab. 1. Comparison of the actual system performance with the 
performance of the developed model 

 F  Fmin  Fmax  σF  

system model 395.377 73.000 1102.000 273.298 
historical data 391.085 11.000 1430.000 295.020 

 
The average flow time and its standard deviation are very similar for both the model and 

the actual system (1% and 8% difference respectively), while maximum flow time shows 
larger difference (approximately 30%). The biggest issue is with minimum flow time, 
which greatly differs between the model and the actual system (664%). This might be 
caused by the fact that some problem properties are not taken into account by the current 
model. Such properties include system failures, data transfers and operation processing 
times which are not fixed, but dependent on the test outcome. However, we conclude that 
our model is fairly close to the representation of the actual system. 

Next research considers the performance of various algorithms for scheduling a queue 
of operations. We have prepared 100 random instances, divided into five groups of 40, 80, 
120, 160 and 200 operations. We have prepared 7 algorithms. Three of them are 
constructive algorithms Cmin, Cmax and Crnd described in the previous section. Moreover, let 
CBo3 indicate the result consisting of the best results from those three algorithms. The 
remaining four algorithms are four versions of SA metaheuristic, each tailored for 
a different goal function. 

Our research was divided into four groups, each for a different goal function. For each 
goal function, we have run all 100 instances for five different numbers of machines: 4, 8, 
12, 16, 20. Each algorithm was run 10 times (important because of the probabilistic nature 
of Crnd and SA). This means that for each goal function we have performed 5 000 runs. In 
each run, we receive four values, one for each algorithm. Those raw results for each run are 
then normalized to the best (minimum) result. For example, if the raw result is 8, 10, 12 and 
14 then we normalize it into 1.0, 1.25, 1.5 and 1.75. Finally, normalized results for all runs 
are averaged and those are presented in Tab. 2. 

We see that SA metaheuristic severely outperforms all constructive algorithms and even 
the CBo3 results. This is true for both average and minimum flow time, but is even more 
visible for standard deviation of job flow time. SA metaheuristic produces results 14 to 19 
times better than the constructive algorithms. The only goal function for which SA is not 
having a big advantage over the constructive algorithms is maximum flow time, although 
SA still produces the best results for this goal function. Moreover, SA is viable for all goal 
functions, while the constructive algorithms tend to favor specific goal functions (as seen 
from  underlined  values).  Thus,  running  all  three  of  the  constructive  algorithms seems  



Tab. 2. Comparison of performance of constructive algorithms and 
Simulated Annealing metaheuristic for scheduling a queue of operations 

 F  Fmin  Fmax  σF  

Cmin 1.470 2.477 1.092 19.419 
Cmax 1.474 2.561 1.064 18.149 
Crnd 1.591 3.182 1.090 14.019 
CBo3 1.470 2.477 1.064 14.019 
SA 1.000 1.023 1.000 1.002 

 
necessary to obtain better results. We conclude that the SA metaheuristic is better choice in 
presence of longer queues of operations and such queues will occur more often if we reduce 
the number of machines (desired as it lowers the maintenance costs and difficulty of 
managing the entire system). 
 
7. Conclusions and future works 
 

In this paper, we presented a case study of software testing platform employing cloud 
computing. The case study included the analysis of the characteristics of the platform and 
well as construction of the mathematical model, portraying the testing process as a job 
scheduling problem. The results can be used for simulations and development of algorithms 
for managing the cloud platform and optimizing testing workflow. Furthermore, we 
presented research indicating the quality of the model as well as the potential of 
metaheuristic methods for this particular platform. 

Future research for this project include development of more advanced models, which 
will take into account aspects such as variable number of machines (due to system failures), 
uncertain processing times and use of more complex goal functions that will correspond to 
the needs of the company. Another research would include development of better online 
algorithms. The final research path assumes making changes to the platform architecture 
(include decentralization) and applying the research results to the actual system. 
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