
JOB SCHEDULING FOR TAAS PLATFORM: A CASE STUDY

Paweł LAMPE, Jarosław RUDY

Abstract: In this paper, we consider a software testing platform employing cloud
computing services with homogeneous-treated machines based on real-life system. We
describe the system and its characteristics. We treat the testing process as a job scheduling
problem and develop a mathematical model for this problem. Then we assess the quality of
the model by comparing with the data collected from the actual system. We also apply
Simulated Annealing metaheuristic for the purpose of scheduling jobs and compare it with
several constructive algorithms against several goal functions.

Keywords: cloud computing, testing as a service, discrete optimization, job scheduling

1. Introduction

Software testing is one of the most important steps in the software development life
cycle and in certain cases may require 40–70% of the total development costs [1].
The importance of software testing has increased over years, resulting in more advanced
testing techniques. Automatic software testing and providing stable and uniform testing
environment are examples of areas of interest in this topic. One of possible solutions for
achieving above goals is the use of cloud computing. Existing cloud models like Software
as a Service (SaaS) can be extended to obtain Testing as a Service (TaaS) model [2].
Existence of such system naturally raises some issues with managing the workflow of the
testing process, leading to several discrete optimization problems.

In this paper, we consider a private TaaS system used by Nokia corporation with the
main purpose of improving the workflow of the testing process. To this end we describe the
system and its most important properties before constructing a mathematical model. The
developed model could be then used to simulate the system and test various optimization
algorithms. We model the optimization of workflow as a specific job scheduling problem
and we consider several possible goal functions.

The remainder of this paper is organized as follows. In section 2 we present a brief
literature overview, focusing on scheduling problems in cloud computing. In sections 3 and
4 we describe the system and formally model the problem of managing the workflow of the
system as a job scheduling problem. In section 5 we describe the solving methods used on
the developed model. Section 6 contains research concerning the quality of the developed
model and performance of the solving methods. Finally, section 7 contains conclusions.

2. Literature overview

For the past two decades cloud computing has been a quickly developing concept,
attracting a great deal of scientific and business attention. It can serve variety of roles, but
generally allows companies easy access to vast computing resources (ranging from
hardware to virtual environments and software) regardless of private resources of the
company. Its ability to provide flexible, reliable and scalable solutions has been proven by

IT giants such as Amazon, Google, Microsoft, IBM and HP among others. In result, a great
number of implementations of the idea of cloud computing were created. More information
about new developments and challenges in creating and managing clouds can be found in
review by Zhang et al. [3].

Testing as a Service (TaaS) is a relatively new concept, aimed as tailoring cloud
resources for use with software testing. TaaS can be used for wide range of software, from
tests for telecommunication companies (as shown in this paper) and mobile devices [4] to
the test of clouds themselves [5]. Detailed overview, and study of possibilities of TaaS was
shown by Gao et al. [6].

One of the most important aspects in cloud computing is workflow management, which
can be understood as assignment of tasks to cloud resources. Since clouds are usually
distributed systems, this workflow management problem can be understood as a specific
online job scheduling problem for sophisticated computer networks (like grids). Due to
widespread use of clouds, job scheduling in cloud and grid environments have been the
target of considerable attention of researchers around the world. Here, we will name just
a few examples.

Pooranian et al. [7] developed GLOA evaluation algorithm inspired by behavior of
leaders in social group to minimize makespan in a geographically spread grid. Similarly,
Mateos et al. [8] developed Ant Colony Optimization-inspired algorithm to minimize
weighted flowtime in cloud environment for a Parameter Sweep Experiments application.
The research performed on real PSE data show decreased completion time compared to
other methods. Taheri et al. [9] employed Artificial Bee Colony method for both scheduling
of jobs and replication of data in grid computing. Computer experiments against three
benchmarks proved the superiority of the developed method.

Most of approaches consider only-criterion goal functions, however multi-criteria
approaches also appear. For example, Rudy and Żelazny [10] developed an online hybrid
memetic algorithm based on NSGA-II method enhanced by local search procedure for
network scheduling problem. They considered several criteria (mean penalty of tasks,
makespan, maximum penalty among others) and used to define four different goal
functions, each composed of two or three criteria before testing the performance of the
developed algorithms against commonly used constructive algorithms.

Less common, but not less important are hybrid approaches, combining more than one
method. For example, Shojafar et al. [11] performed job scheduling for cloud environment
using genetic algorithm method, enhanced by fuzzy theory. Fuzzy rules are used to
transform linguistic terms (like "low length of job") into fitness value ("medium",
"adequate" or "inappropriate"). More information about various methods of solving job
scheduling and workflow management problems in grid and cloud computing can be found
in works [12,13].

3. System description

The system under consideration is a private TaaS platform in Nokia corporation. Its
purpose is to provide automatic testing capabilities for testers and developers of the
management plane (M-Plane) software which is crucial part of the Nokia’s base station
product. The system can be divided into three parts: (1) cloud resources, (2) TaaS toolkit
and (3) end users. Elements (2) and (3) are in-house (provided by Nokia) although they are
distinct departments in the structure of the company. Element (1) is provided by an external
vendor.

3.1. Cloud resources and TaaS toolkit

Cloud service is provided by a few data centers clustered around a single geographic

region. Such configuration is beneficial for the platform, ensuring low and reliable network
latencies. The cloud is heterogeneous by default, allowing for a broad variety of obtainable
virtual machine configurations. It is possible to launch instances ranging from very small
(1 core, 2 GB of RAM, 25 GB of disk capacity) to very large (40 cores, 200 GB of RAM,
1280 GB of disk capacity). However, for the software testing process uniform
configurations with 2 cores, 8 GB of RAM and 25 GB of disk capacity are used. All
configurations use the same operating system. Distributed storage is provided by the
vendor’s distributed object storage solution compatible with Amazon’s simple storage
service (S3).

The TaaS toolkit serves as overlay between the cloud resources and the end users. It is
a set of software tools dedicated to organizing and processing the whole platform workflow
across distinct layers of the TaaS architecture. Currently all the tools are command line
interface (CLI) applications developed within the company. They have various purposes
such as test suite gathering, handling and monitoring of users' requests, job scheduling and
dispatching, monitoring and management of the cloud resources and providing feedback
among others. The toolkit also includes the second, in-house distributed storage solution
based on SFTP service.

3.2. System workflow

The input of the system are test suites, each composed of at least one test case. As the

platform is dedicated for integration testing, every test case is assumed to be coarse-
grained. It means that the single test case needs exclusive access to a single virtual machine
for the time of its execution. This strong assumption cannot be weakened since M-Plane
software integration testing involves many executables and use of low level system calls.

Test suites are provided by the testers, developers and continuous integration robots,
which are generally referred to as clients. To be processed by the TaaS platform, test suites
must be submitted to the system. Such submissions can be performed by using
a TaaS toolkit. The most important tool is local job dispatcher, which resides on each client
machine. The purpose of the dispatcher is to map the test cases to the cloud resources. Such
solution is insufficient as the local dispatchers invoked by the clients are competing with
each other for access to the virtual machines. Furthermore, the dispatchers are not aware of
each other existence. Hence, such architecture makes it impossible to implement more
sophisticated forms of coordination and optimize the workflow. The overview of the
architecture of the system and testing process is shown in Fig. 1.

3.3. System properties

The described system is real-life platform and have been working for some time,
making it possible to perform case study and obtain some statistical data, which could
prove useful in developing solving methods. In this subsection, we will discuss several such
properties. This data (henceforth called history) was collected over the span of 30 days.
This history contained 2 021 104 test cases grouped into 24 718 test suites (yielding 55 test
cases per test suite).

Fig. 1. Structure of considered TaaS system, showing clients, test suites,
local dispatchers, cloud resources and submitting of test cases

Let us start with the analysis of the execution times (durations) of test cases. The

histogram of execution times collected from the 30-day history of the running system is
shown in Fig. 2. We see that a single test case may require anywhere between a few
seconds to 10 minutes to complete execution. However, almost all test cases complete in
under 3 minutes and majority of them takes no more than a minute. Moreover, duration of
a test case is not fixed, instead it is dependent on the result of the test case (success, failure,
error code) and the current state of the cloud (e.g. network transfer). Shown durations does
not include the initial setup step where data must be transferred between client and the
particular cloud resource. However, in practice such setup times are very small – ranging
from 1 up to a few seconds. Thus, in this paper setup times are treated as constants and
added to duration of test cases.

Fig. 2. Histogram of execution times of test cases

Next, and one of the most crucial, facts about the considered system is that a single test
case will most likely be executed again in the future when the next version of software is
tested. In result, test cases are repetitive, executed many times during system activity. This
is extremely important as the test case durations are not known a priori. In fact, the longer
system is working the easier it is to durations of test cases as they are more likely to appear
in the history. Of course, history recording is required for this and such technique will not
work for new, not previously encountered test cases.

In order to research this particular property, it is convenient to define several notions.
First, let each define test cases types (or test types for short). For example, in Fig. 1. there
are five test cases, but only 4 test types: X, Y, Z and Q. Test type X occurs twice, so second
occurrence of test case of that type is a repetition. Next, let us define a parameter called
repetition coefficient for each test suite. Let test suite S contain m test cases. Now if exactly
n of those test cases are repetitions (i.e. test cases of their test type were executed at least
once before) then repetition coefficient is given as:

()
m
n=SR . (1)

Naturally, value of repetition coefficient ranges from 0 (0% of test cases in a suite occurred
before) to 1 (100% of test cases occurred before). Now we can define a function where
arguments are subsequent test suites (in history order) and the values are repetition
coefficients for each test. Such function is presented in Fig. 3.

We can see that at the beginning test suites have R(S) near zero, but after several
hundred test suites the values are approaching one. Let us also note that the function is not
increasing or even non-decreasing – completely new test cases may appear, making it
possible for subsequent test suites to have lower R(S) than the test suite immediately before
it. However, such events are rare.

Fig. 3. Function of repetition coefficient for subsequent test suites

In addition to Fig. 3. let us present some more data concerning test case repetition. In
aforementioned history of 2 021 104 test cases there were 6520 different test types in total.
A single type had between 0 to 4566 repetitions (appeared in 1 to 4567 test suites) with 307
repetitions on average. Moreover, 588 test types appeared in only one test suite (this is 9%
of all test types and only 0.03% of all executed test cases). A test suite had 81.5 repeated
test cases on average, resulting in R(S) exceeding 99% of test cases of that suite. After 350
test suites, average R(S) exceeded 83%. We conclude that recorded history can be used to
estimate test case durations for the most of system lifetime.

4. Problem description

The problem considered in this paper can be described as a specific type of online job
scheduling problem. There is a set M = { 1, 2, … , m } of m homogeneous machines. Next,
a set J of jobs (test suites) to be completed is given. In general, the set J is given online (i.e.
jobs can be added to the set as it is processed). For the purpose of this paper we can assume
time boundaries. Thus, set J = { 1, 2, … , n } has fixed size and consists of n jobs. Job
j consists of tj operations (test cases) numbered from 1 to tj. Job j arrives at time aj. Let us
also define sequence T = { 1, 2, … , t } of all operations, ordered by the jobs i.e. operations
from 1 to t1 belong to job 1, operations from t1+1 to t1 +t2 belong to job 2 and so on. The
total number of operations is given by t:

∑
n

=j
jt=t

1
. (2)

We assume the processing time of each operation is fixed. Processing time of the i-th
operation in set T is given by pi. Alternatively, processing time of i-th operation of j-th job
is given by j

ip .
Each of the operations in T can be processed by any machine and the order of execution

of operations in a job does not matter, similarly to the order of execution of jobs. However,
execution of any job must be preceded by copying the necessary data files to the cloud.
This is represented by a job setup time s (the same for all jobs). Also, let set Zj designate all
operations from job j.

The solution to the problem is given as a schedule which compromises of vector of
operation start times S of size t. Si indicates the start time of operation i, according to the
ordering in set T. Similarly, we can define vector C of completion times of operations. Let
us notice that iii p+S=C . The schedule must be feasible, meaning that (a) any
operation at any time can be executed by at most one machine, (b) any machine at any time
can execute at most one operation, (c) operations cannot be interrupted (d) any operation
cannot start execution before the arrival (release) time of its job. The goal is to find
a feasible schedule S* which minimizes the given goal function K:

()SK=S
Π
nim

S
*

∈
, (3)

where Π is the set of all schedules.

We consider four different goal functions. Let Fj be the flowtime of job j defined as
follows:

jj
j SC=F − , (4)

where Cj and Sj are start and completion times of job j computed as:

j
i

j s=S nim
jZi∈

, (5)

j
i

j c=C axm
jZi∈

, (6)

where j
is and j

ic are start and completion times of the i-th operation in j-th job.

The four criteria are: total (average) job flowtime ∑F , minimum job flowtime

Fmin , maximum job flowtime Fmax and standard deviation of job flowtime σF ,
given respectively as:

∑∑
n

j=
jF=F

1
, (7)

jF=F nim
Jj

min
∈

, (8)

jF=F axm
Jj

max
∈

, (9)

()∑ −
n

j=
j FF

n
=σF

1

21
. (10)

5. Solving methods

In order to solve the problem, we have considered both simple constructive algorithms
as well as more advanced metaheuristics. Thanks to repetition coefficient exceeding 99%
for relatively short history, we assume that all algorithms are clairvoyant i.e. processing
times of all operations all known in advance.

We start with constructive algorithms as they are simpler and one of them is already
employed for use in the actual system (although performed by local dispatchers). All
constructive algorithms share basic behavior: they collect incoming operations in a buffer
and wait for available machines. Machine becomes available when it completes all
operations currently assigned to it (machines are also available at the beginning of the
algorithm). When both at least one machine is available and at least one operation in the
buffer is awaiting assignment, then one operation from the buffer is chosen and assigned to

arbitrary chosen available machine. Thus, all constructive algorithms work as per Least
Busy Machine strategy and differ by the method of choosing the operation to assign.

Perhaps the simplest of the constructive algorithms used in this paper is Crnd. It has no
criterion of assignment and hence it assigns a random operation from the whole buffer to
the next available machine. This might remove some form of bias other constructive
algorithms may possess, but also makes the Crnd algorithm non-deterministic and highly
unreliable and thus is rarely used in practice. However, when run enough times and using
the best-found result Crnd can perform well and might be used as a reference point.

Next constructive algorithm is Cmax which is currently employed in company for
dispatching of jobs on local machines. It maintains a queue of operations for each buffered
job and operations in each queue are sorted in ascending order (hence the name of the
algorithm). When a machine becomes available a queue is chosen at random and the
operation from the end of that queue is assigned to that machine. This version of Cmax is
thus non-deterministic as well, but it was made that way to represent the algorithm
currently employed in the company – local dispatchers compete for the cloud resources and
might submit operations at random. Lastly, we consider Cmin algorithm which works the
same as Cmax, but sorts the queues in descending order.

Next we consider metaheuristic methods, which are slower and usually probabilistic
methods but are easier to control and often provide better results. As the target algorithm
must be both resilient and simple we have decided to use Simulated Annealing (SA)
method, which is commonly used for both discrete and continuous optimization problems.
As reported in [14], SA is a mature optimization method and its utility both in theory and
practice was proven over the years. It has been also very successful in the field of job
scheduling. As the computer hardware gets more powerful over time it is also desired for
algorithm to be susceptible to parallelization. An example of fine-grain parallelization using
SA method can be found in [15] where authors present two effective methods of parallel
objective function computation.

The SA metaheuristic used in this paper is a classical form of algorithm dedicated to job
scheduling problem. The main assumption is that the operation execution times are known
a priori. The solution is represented as a matrix where rows represent machines and
columns represent operations assigned to the machines. Initial solution is created using
constructive algorithm Cmax described above. Every new solution is obtained from the
previous one by either swap of random two operations or move of random operation from
machine mx to my into random column. The cooling scheme take the form of α(t) = t0 – i/I
where i is the current iteration number and I is the total number of iterations (fixed at
100 000). For an acceptance probability calculation, a classical exponential function was
used.

6. Computer experiment

In this section, we present two computer experiments. First is aimed at presenting the
quality of the developed model of the problem by comparing it with the historical data
collected from the actual system. In the second experiment, we compare the performance of
constructive algorithms and SA metaheuristic for a given queue of jobs/operations.

We start by the evaluation of the quality of the developed model. To this end we
consider instance consisting of a fragment of the historical data collected from the actual
system. This fragment covers the span of several hours during which the number of
machines remained constant. This instance contained 26554 operations and 188 jobs. It is

important to note that on average 30% of operations of a given job were new i.e. had
unknown processing times. The data contains not only the jobs, operations and their arrival
times, but also recorded info about each job/operation start and completion times.

Using the aforementioned instance, we have computed the values of the four goal
functions that were obtained during the real-life work of the system. Note that actual
system uses local dispatchers on client machines and those dispatchers employ Cmax
constructive algorithm. Thus, that result was compared with the Cmax algorithm applied to
our developed model for the same instance. Comparison results are shown in Tab. 1.

Tab. 1. Comparison of the actual system performance with the
performance of the developed model

 F Fmin Fmax σF

system model 395.377 73.000 1102.000 273.298
historical data 391.085 11.000 1430.000 295.020

The average flow time and its standard deviation are very similar for both the model and

the actual system (1% and 8% difference respectively), while maximum flow time shows
larger difference (approximately 30%). The biggest issue is with minimum flow time,
which greatly differs between the model and the actual system (664%). This might be
caused by the fact that some problem properties are not taken into account by the current
model. Such properties include system failures, data transfers and operation processing
times which are not fixed, but dependent on the test outcome. However, we conclude that
our model is fairly close to the representation of the actual system.

Next research considers the performance of various algorithms for scheduling a queue
of operations. We have prepared 100 random instances, divided into five groups of 40, 80,
120, 160 and 200 operations. We have prepared 7 algorithms. Three of them are
constructive algorithms Cmin, Cmax and Crnd described in the previous section. Moreover, let
CBo3 indicate the result consisting of the best results from those three algorithms. The
remaining four algorithms are four versions of SA metaheuristic, each tailored for
a different goal function.

Our research was divided into four groups, each for a different goal function. For each
goal function, we have run all 100 instances for five different numbers of machines: 4, 8,
12, 16, 20. Each algorithm was run 10 times (important because of the probabilistic nature
of Crnd and SA). This means that for each goal function we have performed 5 000 runs. In
each run, we receive four values, one for each algorithm. Those raw results for each run are
then normalized to the best (minimum) result. For example, if the raw result is 8, 10, 12 and
14 then we normalize it into 1.0, 1.25, 1.5 and 1.75. Finally, normalized results for all runs
are averaged and those are presented in Tab. 2.

We see that SA metaheuristic severely outperforms all constructive algorithms and even
the CBo3 results. This is true for both average and minimum flow time, but is even more
visible for standard deviation of job flow time. SA metaheuristic produces results 14 to 19
times better than the constructive algorithms. The only goal function for which SA is not
having a big advantage over the constructive algorithms is maximum flow time, although
SA still produces the best results for this goal function. Moreover, SA is viable for all goal
functions, while the constructive algorithms tend to favor specific goal functions (as seen
from underlined values). Thus, running all three of the constructive algorithms seems

Tab. 2. Comparison of performance of constructive algorithms and
Simulated Annealing metaheuristic for scheduling a queue of operations

 F Fmin Fmax σF

Cmin 1.470 2.477 1.092 19.419
Cmax 1.474 2.561 1.064 18.149
Crnd 1.591 3.182 1.090 14.019
CBo3 1.470 2.477 1.064 14.019
SA 1.000 1.023 1.000 1.002

necessary to obtain better results. We conclude that the SA metaheuristic is better choice in
presence of longer queues of operations and such queues will occur more often if we reduce
the number of machines (desired as it lowers the maintenance costs and difficulty of
managing the entire system).

7. Conclusions and future works

In this paper, we presented a case study of software testing platform employing cloud
computing. The case study included the analysis of the characteristics of the platform and
well as construction of the mathematical model, portraying the testing process as a job
scheduling problem. The results can be used for simulations and development of algorithms
for managing the cloud platform and optimizing testing workflow. Furthermore, we
presented research indicating the quality of the model as well as the potential of
metaheuristic methods for this particular platform.

Future research for this project include development of more advanced models, which
will take into account aspects such as variable number of machines (due to system failures),
uncertain processing times and use of more complex goal functions that will correspond to
the needs of the company. Another research would include development of better online
algorithms. The final research path assumes making changes to the platform architecture
(include decentralization) and applying the research results to the actual system.

Bibliography

1. Yu, L., Tsai W., Chen X., Liu L., Zhao Y., Tang L., Zhao W.: Testing as a Service over

Cloud, Service Oriented System Engineering (SOSE), 2010 Fifth IEEE International
Symposium on, 2010, 181–188.

2. Candea G., Bucur S., Zamfir C.: Automated software testing as a service, Proceedings
of the 1st ACM symposium on Cloud computing, 2010, 155–160.

3. Zhang Q., Cheng L., Boutaba R.: Cloud computing: state-of-the-art and research
challenges, Journal of internet services and applications, 1, 1, 2010, 7–18.

4. Gao J., Bai X., Tsai W., Uehara T.: Mobile application testing, Computer, 47, 2, 2014,
46–55.

5. Gao J., Bai X., Tsai W.: Cloud testing-issues, challenges, needs and practice, Software
Engineering: An International Journal, 1, 1, 2011, 9–23.

6. Gao J., Bai X., Tsai W., Uehara T.: Testing as a service (taas) on clouds, Service
Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on,
2013, 212–223.

7. Pooranian Z., Shojafar M., Abawajy J., Singhal M.: GLOA: a new job scheduling
algorithm for grid computing, IJIMAI, 2, 1, 2013, 59–64.

8. Mateos C., Pacini E., Garino C. G.: An ACO-inspired algorithm for minimizing
weighted flowtime in cloud-based parameter sweep experiments, Advances in
Engineering Software, 56, 2013, 38–50.

9. Taheri J., Lee Y. C., Zomaya A., Siegel H. J.: A Bee Colony based optimization
approach for simultaneous job scheduling and data replication in grid environments,
Computers & Operations Research, 40, 6, 2013, 1564–1578.

10. Rudy J., Żelazny D.: Memetic algorithm approach for multi-criteria network
scheduling, Proceeding of the International Conference on ICT Management for Global
Competitiveness and Economic Growth in Emerging Economies, 2012, 247–261.

11. Shojafar M., Javanmardi S., Abolfazli S., Cordeschi N.: FUGE: A joint meta-heuristic
approach to cloud job scheduling algorithm using fuzzy theory and a genetic method,
Cluster Computing, 18, 2, 2015, 829–844.

12. Bardsiri A., K., Hashemi S., M.: A review of workflow scheduling in cloud computing
environment, International Journal of Computer Science and Management Research, 1,
3, 2012, 348–351.

13. Ma T., Yan Q., Liu W., Guan D., Lee S.: Grid task scheduling: algorithm review, IETE
Technical Review, 28, 2, 2011, 158–167.

14. Dowsland K., Thompson J.: Simulated annealing. Springer, 2012.
15. Bożejko W., Pempera J., Smutnicki C.: Parallel simulated annealing for the job shop

scheduling problem, International Conference on Computational Science, 2009, 631–640.

Paweł LAMPE, M.Sc.
Jarosław RUDY, Ph.D.
Department of Computer Engineering
Wrocław University of Science and Technology
50-370 Wrocław, Wybrzeże Wyspiańskiego 27
tel./fax: 71 320 27 45
e-mail: pawel.lampe@pwr.edu.pl
 jaroslaw.rudy@pwr.edu.pl

